Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Glob Antimicrob Resist ; 33: 78-82, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36889382

RESUMEN

OBJECTIVES: Acinetobacter baumannii, a nosocomial pathogen, exhibits multidrug resistance and is a major concern worldwide. We therefore aimed to evaluate the genomic features of the clinical strain A. baumannii KBN10P05679 to elucidate its antibiotic resistance mechanisms and virulence factors. METHODS: In silico multilocus sequence typing, phylogenetic identification, genome annotation, genome analysis, antibiotic susceptibility testing, and biofilm formation assay were performed, and the expression levels of antibiotic resistance- and biofilm-related genes were investigated. RESULTS: The complete genome of KBN10P05679 comprises a circular chromosome of 3 990 428 bp and two plasmids (74 294 and 8731 bp) and was assigned to the ST451 sequence type. Clusters of Orthologous Gene annotation identified 3810 genes, including those involved in amino acid transport and metabolism, transcription, inorganic ion transport, energy production and conversion, replication, recombination and repair, and carbohydrate and protein metabolism. The antibiotic resistance genes were investigated by searching the Comprehensive Antibiotic Resistance Database, and the genome was found to harbour 30 different antibiotic resistance genes. Analysis of the Virulence Factor Database revealed 86 virulence factor genes in the KBN1005679 genome. The KBN10P05679 strain was found to have a higher capacity for biofilm formation and expressed biofilm-related genes at a higher level than the other tested strains. CONCLUSIONS: The antibiotic resistance genotype and potential virulence factor-related data obtained in this study would help direct future studies for developing the control measures for this multidrug-resistant pathogen.


Asunto(s)
Acinetobacter baumannii , Virulencia/genética , Antibacterianos/farmacología , Genoma Bacteriano , Filogenia , Farmacorresistencia Bacteriana , Factores de Virulencia/genética , Genotipo
2.
Front Microbiol ; 13: 988522, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36225352

RESUMEN

Most clinical isolates of Acinetobacter baumannii, a nosocomial pathogen, are multidrug-resistant (MDR), fueling the search for alternative therapies. Bacteriophage-derived endolysins have potent antibacterial activities and are considered as alternatives to antibiotics against A. baumannii infection. Gram-negative bacteria possess outer lipid membrane that prevents direct contact between the endolysins and the cell wall. We hypothesized that the fusion of antimicrobial peptide (AMP) with endolysin could help to reduce bacterial endolysin resistance and increase antimicrobial activity by membrane permeability action. Accordingly, we fused cecropin A, a commonly used AMP, with the N-terminus of AbEndolysin, which enhances the bactericidal activity of the chimeric endolysin. The bactericidal activity of cecropin A-fused AbEndolysin increased by at least 2-8 fold for various MDR A. baumannii clinical isolates. The in vitro bactericidal activity results also showed higher bacterial lysis by the chimeric endolysin than that by the parental lysin. The engineered AbEndolysin (eAbEndolysin) showed synergistic effects with the beta-lactam antibiotics cefotaxime, ceftazidime, and aztreonam, and an additive effect with meropenem and imipenem. eAbEndolysin had no cytotoxic effect on A549 cell line and rescued mice (40% survival rate) from systemic A. baumannii infection. Together, these findings suggest the potential of lysin therapy and may prompt its use as an alternative to antibiotics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...