Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Respir Res ; 25(1): 303, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39112999

RESUMEN

BACKGROUND: Acute lung injury (ALI) following pneumonia involves uncontrolled inflammation and tissue injury, leading to high mortality. We previously confirmed the significantly increased cargo content and extracellular vesicle (EV) production in thrombin-preconditioned human mesenchymal stromal cells (thMSCs) compared to those in naïve and other preconditioning methods. This study aimed to investigate the therapeutic efficacy of EVs derived from thMSCs in protecting against inflammation and tissue injury in an Escherichia coli (E. coli)-induced ALI mouse model. METHODS: In vitro, RAW 264.7 cells were stimulated with 0.1 µg/mL liposaccharides (LPS) for 1 h, then were treated with either PBS (LPS Ctrl) or 5 × 107 particles of thMSC-EVs (LPS + thMSC-EVs) for 24 h. Cells and media were harvested for flow cytometry and ELISA. In vivo, ICR mice were anesthetized, intubated, administered 2 × 107 CFU/100 µl of E. coli. 50 min after, mice were then either administered 50 µL saline (ECS) or 1 × 109 particles/50 µL of thMSC-EVs (EME). Three days later, the therapeutic efficacy of thMSC-EVs was assessed using extracted lung tissue, bronchoalveolar lavage fluid (BALF), and in vivo computed tomography scans. One-way analysis of variance with post-hoc TUKEY test was used to compare the experimental groups statistically. RESULTS: In vitro, IL-1ß, CCL-2, and MMP-9 levels were significantly lower in the LPS + thMSC-EVs group than in the LPS Ctrl group. The percentages of M1 macrophages in the normal control, LPS Ctrl, and LPS + thMSC-EV groups were 12.5, 98.4, and 65.9%, respectively. In vivo, the EME group exhibited significantly lower histological scores for alveolar congestion, hemorrhage, wall thickening, and leukocyte infiltration than the ECS group. The wet-dry ratio for the lungs was significantly lower in the EME group than in the ECS group. The BALF levels of CCL2, TNF-a, and IL-6 were significantly lower in the EME group than in the ECS group. In vivo CT analysis revealed a significantly lower percentage of damaged lungs in the EME group than in the ECS group. CONCLUSION: Intratracheal thMSC-EVs administration significantly reduced E. coli-induced inflammation and lung tissue damage. Overall, these results suggest therapeutically enhanced thMSC-EVs as a novel promising therapeutic option for ARDS/ALI.


Asunto(s)
Lesión Pulmonar Aguda , Vesículas Extracelulares , Células Madre Mesenquimatosas , Ratones Endogámicos ICR , Trombina , Animales , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/trasplante , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/microbiología , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/terapia , Ratones , Células Madre Mesenquimatosas/metabolismo , Células RAW 264.7 , Trombina/metabolismo , Escherichia coli , Masculino , Infecciones por Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/patología , Infecciones por Escherichia coli/terapia , Resultado del Tratamiento , Modelos Animales de Enfermedad , Humanos
2.
ACS Appl Mater Interfaces ; 15(34): 40355-40368, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37552888

RESUMEN

The accomplishment of concurrent interenzyme chain reaction and direct electric communication in a multienzyme-electrode is challenging since the required condition of multienzymatic binding conformation is quite complex. In this study, an enzyme cascade-induced bioelectrocatalytic system has been constructed using solid binding peptide (SBP) as a molecular binder that coimmobilizes the invertase (INV) and flavin adenine dinucleotide (FAD)-dependent glucose dehydrogenase gamma-alpha complex (GDHγα) cascade system on a single electrode surface. The SBP-fused enzyme cascade was strategically designed to induce diverse relative orientations of coupling enzymes while enabling efficient direct electron transfer (DET) at the FAD cofactor of GDHγα and the electrode interface. The interenzyme relative orientation was found to determine the intermediate delivery route and affect overall chain reaction efficiency. Moreover, interfacial DET between the fusion GDHγα and the electrode was altered by the binding conformation of the coimmobilized enzyme and fusion INVs. Collectively, this work emphasizes the importance of interenzyme orientation when incorporating enzymatic cascade in an electrocatalytic system and demonstrates the efficacy of SBP fusion technology as a generic tool for developing cascade-induced direct bioelectrocatalytic systems. The proposed approach is applicable to enzyme cascade-based bioelectronics such as biofuel cells, biosensors, and bioeletrosynthetic systems utilizing or producing complex biomolecules.


Asunto(s)
Técnicas Biosensibles , Flavina-Adenina Dinucleótido , Transporte de Electrón , Flavina-Adenina Dinucleótido/química , Flavina-Adenina Dinucleótido/metabolismo , Glucosa , Glucosa 1-Deshidrogenasa/química , Péptidos/metabolismo , Electrodos , Enzimas Inmovilizadas/química
3.
Int J Mol Sci ; 24(9)2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37175961

RESUMEN

Mesenchymal stem cells (MSCs) have been studied as novel therapeutic agents because of their immunomodulatory properties in inflammatory diseases. The suppressor of cytokine signaling (SOCS) proteins are key regulators of the immune response and macrophage modulation. In the present study, we hypothesized that SOCS in MCSs might mediate macrophage modulation and tested this in a bacteria-induced acute lung injury (ALI) mouse model. The macrophage phenotype was observed in RAW264.7 alveolar macrophages exposed to lipopolysaccharide (LPS) in an in vitro model, and in the ALI mouse model induced by tracheal administration of Escherichia coli (1 × 107 CFU in 0.05mL PBS). In LPS-exposed RAW264.7 cells, the levels of markers of M1 macrophages, such as CD86 and pro-inflammatory cytokines (IL-1α, IL-1ß, IL-6 and TNF-α), significantly increased, but they significantly reduced after MSC treatment. Meanwhile, the levels of markers of M2 macrophages, such as CD204 and anti-inflammatory cytokines (IL-4 and IL-10), increased after LPS exposure, and further significantly increased after MSC treatment. This regulatory effect of MSCs on M1/M2 macrophage polarization was significantly abolished by SOCS3 inhibition. In the E. coli-induced ALI model, tissue injury and inflammation in the mouse lung were significantly attenuated by the transplantation of MSCs, but not by SOCS3-inhibited MSCs. The regulatory effect of MSCs on M1/M2 macrophage polarization was observed in the lung injury model but was significantly abolished by SOCS3 inhibition. Taken together, our findings suggest that SOCS3 is an important mediator for macrophage modulation in anti-inflammatory properties of MSCs.


Asunto(s)
Lesión Pulmonar Aguda , Células Madre Mesenquimatosas , Ratones , Animales , Proteína 3 Supresora de la Señalización de Citocinas/genética , Lipopolisacáridos/toxicidad , Escherichia coli , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/terapia , Proteínas Supresoras de la Señalización de Citocinas/genética , Antiinflamatorios , Interleucina-1alfa , Pulmón
4.
Chemosphere ; 259: 127467, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32593811

RESUMEN

Porous hollow fiber polysulfone (PSf) membranes were fabricated via a phase-inversion process and their performance during ultrafiltration (UF) was evaluated. The effects of the composition and concentration (0-50%) of different bore fluid mixtures, including N-methyl-2-pyrrolidone (NMP)/water, glycerol (G)/water, and ethylene glycol (EG)/water (in comparison with pure deionized water), on the structure, physicochemical properties, and performance of the fabricated membranes was investigated. Using these various bore fluid mixtures altered the thermodynamic and kinetic properties of the phase inversion system, and changed the morphology and structure of the fabricated membranes, especially on the lumen side. Increasing concentrations of NMP, G, and EG in the bore fluid resulted in increased pore size, porosity, and hydrophilicity. These bore fluid mixtures exhibited a strong influence on the perm-selectivity of the as-spun hollow fiber membranes. The membrane fabricated using 50% NMP/water as the bore fluid mixture exhibited the highest water flux of 166.98 LMH with a bovine serum albumin rejection rate of more than 97%. Overall, this study introduces an easy and effective way to control the structure of the membrane through bore fluid modification and shows how the inner skin layer properties can have a remarkable effect on water permeance, even in the out-in filtration test.


Asunto(s)
Purificación del Agua/métodos , Glicerol , Interacciones Hidrofóbicas e Hidrofílicas , Membranas Artificiales , Polímeros , Porosidad , Pirrolidinonas , Albúmina Sérica Bovina , Sulfonas , Ultrafiltración/métodos , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA