Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Intervalo de año de publicación
1.
Front Immunol ; 12: 771242, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34880867

RESUMEN

Coronavirus disease 2019 (COVID-19) pandemic is a serious threat to global public health and social and economic development. Various vaccine platforms have been developed rapidly and unprecedentedly, and at least 16 vaccines receive emergency use authorization (EUA). However, the causative pathogen severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has continued to evolve and mutate, emerging lots of viral variants. Several variants have successfully become the predominant strains and spread all over the world because of their ability to evade the pre-existing immunity obtained after previous infections with prototype strain or immunizations. Here, we summarized the prevalence and biological structure of these variants and the efficacy of currently used vaccines against the SARS-CoV-2 variants to provide guidance on how to design vaccines more rationally against the variants.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , COVID-19/prevención & control , Evasión Inmune , SARS-CoV-2/inmunología , Animales , COVID-19/virología , Vacunas contra la COVID-19/genética , Humanos , Inmunidad , SARS-CoV-2/genética
2.
Curr Med Sci ; 41(6): 1052-1064, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34935114

RESUMEN

The ongoing Coronavirus disease 19 pandemic has likely changed the world in ways not seen in the past. Neutralizing antibody (NAb) assays play an important role in the management of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) outbreak. Using these tools, we can assess the presence and duration of antibody-mediated protection in naturally infected individuals, screen convalescent plasma preparations for donation, test the efficacy of immunotherapy, and analyze NAb titers and persistence after vaccination to predict vaccine-induced protective effects. This review briefly summarizes the various methods used for the detection of SARS-CoV-2 NAbs and compares their advantages and disadvantages to facilitate their development and clinical application.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Prueba Serológica para COVID-19/métodos , COVID-19/inmunología , Pruebas de Neutralización/métodos , SARS-CoV-2/inmunología , COVID-19/prevención & control , COVID-19/terapia , Prueba Serológica para COVID-19/tendencias , Vacunas contra la COVID-19/farmacología , Humanos , Inmunización Pasiva , Pruebas de Neutralización/tendencias , Pandemias/prevención & control , Sueroterapia para COVID-19
3.
Curr Med Sci ; 41(6): 1081-1086, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34741251

RESUMEN

OBJECTIVE: The ongoing COVID-19 pandemic warrants accelerated efforts to test vaccine candidates. To explore the influencing factors on vaccine-induced effects, antibody responses to an inactivated SARS-CoV-2 vaccine in healthy individuals who were not previously infected by COVID-19 were assessed. METHODS: All subjects aged 18-60 years who did not have SARS-CoV-2 infection at the time of screening from June 19, 2021, to July 02, 2021, were approached for inclusion. All participants received two doses of inactivated SARS-CoV-2 vaccine. Serum IgM and IgG antibodies were detected using a commercial kit after the second dose of vaccination. A positive result was defined as 10 AU/mL or more and a negative result as less than 10 AU/mL. This retrospective study included 97 infection-naïve individuals (mean age 35.6 years; 37.1% male, 62.9% female). RESULTS: The seropositive rates of IgM and IgG antibody responses elicited after the second dose of inactivated SARS-CoV-2 vaccine were 3.1% and 74.2%, respectively. IgG antibody levels were significantly higher than IgM levels (P<0.0001). Sex had no effect on IgM and IgG antibody response after the second dose. The mean anti-IgG level in older persons (⩾42 years) was significantly lower than that of younger recipients. There was a significantly lower antibody level at > 42 days compared to that at 0-20 days (P<0.05) and 21-31 days (P<0.05) after the second dose. CONCLUSION: IgG antibody response could be induced by inactivated SARS-CoV-2 vaccine in healthy individuals (>18 years), which can be influenced by age and detection time after the second dose of vaccination.


Asunto(s)
Anticuerpos Antivirales/sangre , Vacunas contra la COVID-19/farmacología , COVID-19/inmunología , COVID-19/prevención & control , SARS-CoV-2/inmunología , Vacunas de Productos Inactivados/farmacología , Adolescente , Adulto , Factores de Edad , COVID-19/epidemiología , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/inmunología , China/epidemiología , Femenino , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Masculino , Persona de Mediana Edad , Pandemias , Estudios Retrospectivos , Vacunas de Productos Inactivados/administración & dosificación , Vacunas de Productos Inactivados/inmunología , Adulto Joven
4.
Pathogens ; 10(5)2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-34063426

RESUMEN

Rifampicin (RIF) is one of the most important first-line anti-tuberculosis (TB) drugs, and more than 90% of RIF-resistant (RR) Mycobacterium tuberculosis clinical isolates belong to multidrug-resistant (MDR) and extensively drug-resistant (XDR) TB. In order to identify specific candidate target proteins as diagnostic markers or drug targets, differential protein expression between drug-sensitive (DS) and drug-resistant (DR) strains remains to be investigated. In the present study, a label-free, quantitative proteomics technique was performed to compare the proteome of DS, RR, MDR, and XDR clinical strains. We found iniC, Rv2141c, folB, and Rv2561 were up-regulated in both RR and MDR strains, while fadE9, espB, espL, esxK, and Rv3175 were down-regulated in the three DR strains when compared to the DS strain. In addition, lprF, mce2R, mce2B, and Rv2627c were specifically expressed in the three DR strains, and 41 proteins were not detected in the DS strain. Functional category showed that these differentially expressed proteins were mainly involved in the cell wall and cell processes. When compared to the RR strain, Rv2272, smtB, lpqB, icd1, and folK were up-regulated, while esxK, PPE19, Rv1534, rpmI, ureA, tpx, mpt64, frr, Rv3678c, esxB, esxA, and espL were down-regulated in both MDR and XDR strains. Additionally, nrp, PPE3, mntH, Rv1188, Rv1473, nadB, PPE36, and sseA were specifically expressed in both MDR and XDR strains, whereas 292 proteins were not identified when compared to the RR strain. When compared between MDR and XDR strains, 52 proteins were up-regulated, while 45 proteins were down-regulated in the XDR strain. 316 proteins were especially expressed in the XDR strain, while 92 proteins were especially detected in the MDR strain. Protein interaction networks further revealed the mechanism of their involvement in virulence and drug resistance. Therefore, these differentially expressed proteins are of great significance for exploring effective control strategies of DR-TB.

5.
Helicobacter ; 26(1): e12758, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33259676

RESUMEN

BACKGROUND: Helicobacter pylori is a gram-negative bacterium involved in many gastric pathologies such as ulcers and cancers. Although the treatment for this infection has existed for several years, the development of a vaccine is nevertheless necessary to reduce the severe forms of the disease. For more than three decades, many advances have been made particularly in the understanding of virulence factors as well as the pathogenesis of gastric diseases caused by H. pylori. Among these key virulence factors, specific antigens have been identified: Urease, Vacuolating cytotoxin A (VacA), Cytotoxin-associated gene A (CagA), Blood group antigen-binding adhesin (BabA), H. pylori adhesin A (HpaA), and others. OBJECTIVES: This review will focus on H. pylori adhesins, in particular, on HpaA and on the current knowledge of H. pylori vaccines. METHODS: All of the information included in this review was retrieved from published studies on H. pylori adhesins in H. pylori infections. RESULTS: These proteins, used in their native or recombinant forms, induce protection against H. pylori in experimental animal models. CONCLUSION: H. pylori adhesins are known to be promising candidate vaccines against H. pylori. Future research should be carried out on adhesins, in particular, on HpaA.


Asunto(s)
Adhesinas Bacterianas/inmunología , Vacunas Bacterianas/inmunología , Infecciones por Helicobacter , Helicobacter pylori , Animales , Antígenos Bacterianos/inmunología , Proteínas Bacterianas/inmunología , Infecciones por Helicobacter/prevención & control , Helicobacter pylori/inmunología , Ureasa/inmunología , Factores de Virulencia/inmunología
6.
Allergy ; 76(2): 551-561, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33040337

RESUMEN

BACKGROUND: The missing asymptomatic COVID-19 infections have been overlooked because of the imperfect sensitivity of the nucleic acid testing (NAT). Globally understanding the humoral immunity in asymptomatic carriers will provide scientific knowledge for developing serological tests, improving early identification, and implementing more rational control strategies against the pandemic. MEASURE: Utilizing both NAT and commercial kits for serum IgM and IgG antibodies, we extensively screened 11 766 epidemiologically suspected individuals on enrollment and 63 asymptomatic individuals were detected and recruited. Sixty-three healthy individuals and 51 mild patients without any preexisting conditions were set as controls. Serum IgM and IgG profiles were further probed using a SARS-CoV-2 proteome microarray, and neutralizing antibody was detected by a pseudotyped virus neutralization assay system. The dynamics of antibodies were analyzed with exposure time or symptoms onset. RESULTS: A combination test of NAT and serological testing for IgM antibody discovered 55.5% of the total of 63 asymptomatic infections, which significantly raises the detection sensitivity when compared with the NAT alone (19%). Serum proteome microarray analysis demonstrated that asymptomatics mainly produced IgM and IgG antibodies against S1 and N proteins out of 20 proteins of SARS-CoV-2. Different from strong and persistent N-specific antibodies, S1-specific IgM responses, which evolved in asymptomatic individuals as early as the seventh day after exposure, peaked on days from 17 days to 25 days, and then disappeared in two months, might be used as an early diagnostic biomarker. 11.8% (6/51) mild patients and 38.1% (24/63) asymptomatic individuals did not produce neutralizing antibody. In particular, neutralizing antibody in asymptomatics gradually vanished in two months. CONCLUSION: Our findings might have important implications for the definition of asymptomatic COVID-19 infections, diagnosis, serological survey, public health, and immunization strategies.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Portador Sano/inmunología , SARS-CoV-2/inmunología , Adulto , Anciano , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , COVID-19/sangre , COVID-19/diagnóstico , Prueba de COVID-19/métodos , Portador Sano/sangre , Portador Sano/diagnóstico , Femenino , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Inmunoglobulina M/sangre , Inmunoglobulina M/inmunología , Masculino , Persona de Mediana Edad
7.
Front Immunol ; 11: 575504, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33117374

RESUMEN

Bacillus Calmette-Guerin (BCG) is the only licensed vaccine to prevent children from tuberculosis (TB), whereas it cannot provide effective protection for adults. Our previous work showed a novel vaccine candidate, liposomal adjuvant DMT emulsified with a multistage antigen CMFO, could protect mice against primary progressive TB, latency, and reactivation. To develop a more effective vaccine against adult TB, we aimed to further understand the role of pattern recognition receptor (PRR) agonists monophosphoryl lipid A (MPLA) and trehalose-6,6'-dibehenate (TDB) of the liposomal adjuvant DMT in the CMFO subunit vaccine-induced protection. Using C57BL/6 mouse models, the current study prepared different dimethyldioctadecylammonium (DDA)-based liposomal adjuvants with MPLA, TDB, or both (DMT), and then compared the immunogenicity and the protective efficacy among different liposomal adjuvanted CMFO subunit vaccines. Our study demonstrated that CMFO/DMT provided stronger and longer-lasting protective efficacy than the CMFO emulsified with adjuvants DDA or DDA/TDB. In addition, DDA/MPLA adjuvanted CMFO conferred a comparable protection in the lung as CMFO/DMT did. Higher levels of IFN-γ, IL-2, TNF-α, and IL-17A secreted by splenocytes were related with a more powerful and durable protection induced by CMFO/DMT through a putative synergistic effect of both MPLA and TDB via binding to TLR4 and Mincle. IL-2+ CD4+ T cells, especially IL-2+ CD4+ TCM cells, in the lung after infection were significantly associated with the vaccine-induced protection, whereas stronger IL-10 response and lower IL-2+ CD4+ T cells also contributed to the inferior protection of the DDA/TDB adjuvanted CMFO subunit vaccine. Given their crucial roles in vaccine-induced protection, combinational different PRR agonists in adjuvant formulation represent a promising strategy for the development of next-generation TB vaccine.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Glucolípidos/farmacología , Inmunogenicidad Vacunal , Lípido A/análogos & derivados , Pulmón/efectos de los fármacos , Mycobacterium tuberculosis/patogenicidad , Compuestos de Amonio Cuaternario/farmacología , Receptores de Reconocimiento de Patrones/agonistas , Vacunas contra la Tuberculosis/farmacología , Tuberculosis Pulmonar/prevención & control , Adyuvantes Inmunológicos/química , Animales , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/microbiología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Composición de Medicamentos , Femenino , Glucolípidos/química , Interacciones Huésped-Patógeno , Lípido A/química , Lípido A/farmacología , Liposomas , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/microbiología , Ratones Endogámicos C57BL , Mycobacterium tuberculosis/inmunología , Compuestos de Amonio Cuaternario/química , Receptores de Reconocimiento de Patrones/metabolismo , Factores de Tiempo , Vacunas contra la Tuberculosis/química , Tuberculosis Pulmonar/inmunología , Tuberculosis Pulmonar/metabolismo , Tuberculosis Pulmonar/microbiología , Vacunación , Vacunas de Subunidad/química , Vacunas de Subunidad/farmacología , Virulencia
8.
J Immunol Res ; 2020: 2083793, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32953889

RESUMEN

Tuberculosis (TB) remains a major and global problem of public health. An effective TB subunit vaccine is urgently needed. Proper selection of the delivery system for the vaccine is crucial for inducing an appropriate immune response tailored to control the target pathogen. In this study, we compared the immunogenicity and protective efficacy of CMFO subunit vaccines against primary progressive TB in two different adjuvant systems: the MTO oil-in-water (O/W) emulsion composed of monophosphoryl lipid A (MPL), trehalose-6,60-dibehenate (TDB), and oil in water emulsion MF59 and the DMT liposome containing dimethyldioctadecylammonium bromide (DDA), monophosphoryl lipid A (MPL), and trehalose-6,60-dibehenate (TDB). Our results demonstrated that the DMT-adjuvanted CMFO could confer more significant protection against M. tuberculosis infection than the CMFO/MTO did in mice. In particular, the adjuvant DMT showed a stronger ability than the O/W emulsion to adjuvant CMFO subunit vaccine and enhanced protection, attributed to elicit Th1-biased responses, strong Th1/Th17 cytokine responses, and IFN-γ + or IL-2+ T cell responses. Therefore, our findings demonstrate that the liposome delivery system shows more effectiveness to adjuvant TB subunit vaccine than O/W emulsion and highlight the importance of adjuvant formulation for the better efficacy of a protein vaccine.


Asunto(s)
Adyuvantes Inmunológicos , Inmunogenicidad Vacunal , Mycobacterium tuberculosis/inmunología , Vacunas contra la Tuberculosis/inmunología , Tuberculosis/prevención & control , Vacunas de Subunidad/inmunología , Animales , Anticuerpos Antibacterianos/inmunología , Antígenos Bacterianos/inmunología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Inmunoglobulina G/inmunología , Lípido A/análogos & derivados , Lípido A/inmunología , Ratones , Linfocitos T/inmunología , Linfocitos T/metabolismo , Vacunas contra la Tuberculosis/administración & dosificación , Vacunas de Subunidad/administración & dosificación
9.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20149633

RESUMEN

ImportanceAsymptomatic COVID-19 infections have a long duration of viral shedding and contribute substantially to disease transmission. However, the missing asymptomatic cases have been significantly overlooked because of imperfect sensitivity of nucleic acid testing. We aimed to investigate the humoral immunity in asymptomatics, which will help us develop serological tests and improve early identification, understand the humoral immunity to COVID-19, and provide more rational control strategies for the pandemic. ObjectiveTo better control the pandemic of COVID-19, dynamics of IgM and IgG responses to 23 proteins of SARS-CoV-2 and neutralizing antibody in asymptomatic COVID-19 infections after exposure time were investigated. Design, setting, and participants63 asymptomatic individuals were screened by RT-qPCR and ELISA for IgM and IgG from 11,776 personnel returning to work, and close contacts with the confirmed cases in different communities of Wuhan by investigation of clusters and tracing infectious sources. 63 healthy contacts with both negative results for NAT and antibodies were selected as negative controls. 51 mild patients without any preexisting conditions were also screened as controls from 1056 patients during hospitalization in Tongji Hospital. A total of 177 participants were enrolled in this study and serial serum samples (n=213) were collected. The research was conducted between 17 February 2020 and 28 April 2020. Serum IgM and IgG profiles of 177 participants were further probed using a SARS-CoV-2 proteome microarray. Neutralizing antibody responses in different population were detected by a pseudotyped virus neutralization assay system. The dynamics of IgM and IgG antibodies and neutralizing antibodies were analyzed with exposure time or symptoms onset. ResultsAsymptomatics were classified into four subgroups based on NAT and serological tests. In particular, only 19% had positive NAT results while approximately 81% detected positive IgM/IgG responses. Comparative SARS-CoV-2 proteome microarray further demonstrated that there was a significantly difference of antibody dynamics responding to S1 or N proteins among three populations, although IgM and IgG profiles could not be used to differentiate them. S1 specific IgM responses were elicited in asymptomatic individuals as early to the seventh day after exposure and peaked on days from 17d to 25d, which might be used as an early diagnostic biomarker and give an additional 36.5% seropositivity. Mild patients produced stronger both S1 specific IgM and neutralizing antibody responses than asymptomatic individuals. Most importantly, S1 specific IgM/IgG responses and the titers of neutralizing antibody in asymptomatic individuals gradually vanished in two months. Conclusions and relevanceOur findings might have important implications for the definition of asymptomatic COVID-19 infections, diagnosis, serological survey, public health and immunization strategies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...