Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Microbiol Biotechnol ; 31(4): 501-509, 2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33746187

RESUMEN

More than half the world's population is thought to be infected with Helicobacter pylori. Although the majority of infected people are asymptomatic, H. pylori infection may cause gastric ulcers and deadly gastric cancer. Owing to the difficulty and invasiveness of current routine culture and diagnostic methods, a highly sensitive and specific noninvasive assay for H. pylori is of interest. This study highlighted the design and performance of a colorimetric magneto loop-mediated isothermal amplification (CM-LAMP) assay to detect H. pylori in spiked saliva samples. LF primers were coated on magnetic nanoparticles by carbodiimide-induced immobilization and functionally used for solidphase amplification. During the LAMP reaction at 66°C, biotin-tagged FIPs were incorporated into LAMP amplicons. The colorimetric signal developed after the addition of NeutrAvidin horseradish peroxidase conjugate (NA-HRP) and ABTS. None of the tested microorganisms, including closely related bacteria, was shown positive by the CM-LAMP assay except H. pylori isolates. This novel platform was highly specific and 100-fold more sensitive (40 CFU/ml or 0.2 CFU per reaction) than the PCR and conventional LAMP assays for the detection of H. pylori in spiked saliva. Our results demonstrated the feasibility of using this noninvasive molecular diagnostic test to detect H. pylori in saliva samples.


Asunto(s)
Colorimetría , Infecciones por Helicobacter/diagnóstico , Helicobacter pylori/aislamiento & purificación , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , Humanos , Campos Magnéticos , Saliva/microbiología , Sensibilidad y Especificidad
3.
Gut Pathog ; 9: 65, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29177012

RESUMEN

BACKGROUND: Many bacteria and archaea possess a defense system called clustered regularly interspaced short palindromic repeats (CRISPR) associated proteins (CRISPR-Cas system) against invaders such as phages or plasmids. This system has not been demonstrated in Helicobacter pylori. The numbers of spacer in CRISPR array differ among bacterial strains and can be used as a genetic marker for bacterial typing. RESULTS: A total of 36 H. pylori isolates were collected from patients in three hospitals located in the central (PBH) and southern (SKH) regions of Thailand. It is of interest that CRISPR-like sequences of this bacterium were detected in vlpC encoded for VacA-like protein C. Virulence genes were investigated and the most pathogenic genotype (cagA vacA s1m1) was detected in 17 out of 29 (58.6%) isolates from PBH and 5 out of 7 (71.4%) from SKH. vapD gene was identified in each one isolate from PBH and SKH. CRISPR-like sequences and virulence genes of 20 isolates of H. pylori obtained in this study were analyzed and CRISPR-virulence typing was constructed and compared to profiles obtained by the random amplification of polymorphic DNA (RAPD) technique. The discriminatory power (DI) of CRISPR-virulence typing was not different from RAPD typing. CONCLUSION: CRISPR-virulence typing in H. pylori is easy and reliable for epidemiology and can be used for inter-laboratory interpretation.

4.
Dis Aquat Organ ; 124(3): 223-232, 2017 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-28492178

RESUMEN

Acute hepatopancreatic necrosis disease, a severe disease of shrimp, is caused by Vibrio parahaemolyticus (AHPND Vp), a halophilic bacterium harboring a plasmid that contains toxin genes homologous to Photorhabdus insect-related toxins. We obtained 9 isolates of Bdellovibrio and like organisms (BALOs) from water and sediment samples in Thailand. Using 16S rRNA sequencing, all of the organisms were identified as Bacteriovorax spp. and were able to attack all tested AHPND Vp isolates. In addition, their various susceptible hosts, including Gram-positive and Gram-negative bacteria, were observed. The optimal ratio for interaction between the Bacteriovorax isolate BV-A and AHPND Vp was determined to be 1:10. The suitable conditions applied for co-culture between BV-A and AHPND Vp were 30°C, 2% NaCl, and pH 7.6. The capability of BV-A to reduce numbers of AHPND Vp in vitro was observed in co-culture after incubation for 2 d and continued until the end of the incubation period. In vivo, BV-A was able to reduce mortality of shrimp post-larvae infected with AHPND Vp. In addition, BV-A significantly decreased the formation of biofilm by AHPND Vp. These findings provide evidence for using Bacteriovorax as a biocontrol of AHPND Vp in shrimp aquaculture.


Asunto(s)
Bdellovibrio/clasificación , Bdellovibrio/fisiología , Penaeidae/microbiología , Vibrio parahaemolyticus/patogenicidad , Animales , Bdellovibrio/genética , Biopelículas , Interacciones Huésped-Patógeno , Filogenia , ARN Bacteriano/genética , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...