Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mammal ; 103(4): 776-785, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36118797

RESUMEN

Biologists have long pondered the extreme limits of life on Earth, including the maximum elevation at which species can live and reproduce. Here we review evidence of a self-sustaining population of mice at an elevation that exceeds that of all previously reported for mammals. Five expeditions over 10 years to Volcán Llullaillaco on the Argentina/Chile border observed and collected mice at elevations ranging from 5,070 m at the mountain's base to the summit at 6,739 m (22,110 feet). Previously unreported evidence includes observations and photographs of live animals and mummified remains, environmental DNA, and a soil microbial community reflecting animal activity that are evaluated in combination with previously reported video recordings and capture of live mice. All of the evidence identifies the mouse as the leaf-eared mouse Phyllotis vaccarum, and it robustly places the population within a haplotype group containing individuals from the Chilean Atacama Desert and nearby regions of Argentina. A critical review of the literature affirms that this population is not only an elevational record for mammals but for all terrestrial vertebrates to date, and we further find that many extreme elevations previously reported for mammals are based on scant or dubious evidence.


Durante mucho tiempo los biólogos han reflexionado sobre los límites extremos de altura a la que las especies pueden vivir y reproducirse. Aquí presentamos nueva evidencia sobre la existencia de una población de ratones establecida a una elevación que supera todos los reports previos para mamíferos. Durante 10 años fueron realizadas 5 expediciones al Volcán Llullaillaco, ubicado en la frontera entre Argentina y Chile; observando y colectando ratones en elevaciones que van desde los 5,070 m hasta la cima de 6,739 m (22,110 feet). La nueva evidencia incluye fotografías de restos momificados, ADN ambiental y la actividad microbiana del suelo que confirman la presencia del animal, la cual fue analizada junto a videos reportados anteriormente y la captura de ejemplares vivos. Toda esta información indica que dicha población corresponde al ratón orejudo amarillento Phyllotis vaccarum y lo posicionan dentro de un grupo de haplotipos compuesto por individuos del Desierto de Atacama y regiones cercanas en Argentina. La revisión crítica de la literatura demostró que esta población no solo es un récord de elevación para los mamíferos, sino para todos los vertebrados terrestres; igualmente, que los reportes de elevaciones extremas reportados para mamíferos se derivan de evidencias escasas y dudosas.

2.
Biology (Basel) ; 11(5)2022 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-35625377

RESUMEN

Transcription activator-like effector nuclease (TALEN) plasmids targeting the channel catfish gonadotropin-releasing hormone (cfGnRH) gene were delivered into fertilized eggs with double electroporation to sterilize channel catfish (Ictalurus punctatus). Targeted cfGnRH fish were sequenced and base deletion, substitution, and insertion were detected. The gene mutagenesis was achieved in 52.9% of P1 fish. P1 mutants (individuals with human-induced sequence changes at the cfGnRH locus) had lower spawning rates (20.0−50.0%) when there was no hormone therapy compared to the control pairs (66.7%) as well as having lower average egg hatch rates (2.0% versus 32.3−74.3%) except for one cfGnRH mutated female that had a 66.0% hatch rate. After low fertility was observed in 2016, application of luteinizing hormone-releasing hormone analog (LHRHa) hormone therapy resulted in good spawning and hatch rates for mutants in 2017, which were not significantly different from the controls (p > 0.05). No exogenous DNA fragments were detected in the genome of mutant P1 fish, indicating no integration of the plasmids. No obvious effects on other economically important traits were observed after the knockout of the reproductive gene in the P1 fish. Growth rates, survival, and appearance between mutant and control individuals were not different. While complete knock-out of reproductive output was not achieved, as these were mosaic P1 brood stock, gene editing of channel catfish for the reproductive confinement of gene-engineered, domestic, and invasive fish to prevent gene flow into the natural environment appears promising.

3.
Mar Biotechnol (NY) ; 24(3): 513-523, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35416602

RESUMEN

Omega-3 polyunsaturated fatty acids (n-3 PUFAs), particularly eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3), play a very important role in human health. Channel catfish (Ictalurus punctatus) is one of the leading freshwater aquaculture species in the USA, but has low levels of EPA and DHA compared to some fish such as salmon. To improve EPA and DHA content, a modification of the n-3 PUFA biosynthetic pathway was achieved through the insertion of an elovl2 transgene isolated from masu salmon (Oncorhynchus masou) driven by a carp ß-actin promoter using a two-hit by gRNA and two oligos with a targeting plasmid (2H2OP) CRISPR/Cas9 approach. Integration rate of the transgene was high (37.5%) and detected in twelve different tissues of P1 transgenic fish with tissue-specific gene expression. Liver and muscle had relative high gene expression (13.4- and 9.2-fold change, respectively). Fatty acid analysis showed DHA content in the muscle from transgenic fish was 1.62-fold higher than in non-transgenic fish (P < 0.05). Additionally, total n-3 PUFAs and omega-6 polyunsaturated fatty acids (n-6 PUFAs) increased to 1.41-fold and 1.50-fold, respectively, suggesting the ß-actin-elovl2 transgene improved biosynthesis of PUFAs in channel catfish as a whole. The n-9 fatty acid level decreased in the transgenic fish compared to the control. Morphometric analysis showed that there were significant differences between injected fish with sgRNAs (including positive and negative fish) and sham-injected controls (P < 0.001). Potential off-target effects are likely the major factor responsible for morphological deformities. Optimization of sgRNA design to maximize activity and reduce off-target effects of CRISPR/Cas9 should be examined in future transgenic research, but this research shows a promising first step in the improvement of n-3 PUFAs in channel catfish.


Asunto(s)
Ácidos Grasos Omega-3 , Ictaluridae , Oncorhynchus , Actinas/genética , Animales , Animales Modificados Genéticamente , Sistemas CRISPR-Cas , Ácidos Docosahexaenoicos , Ácido Eicosapentaenoico , Ácidos Grasos , Ácidos Grasos Insaturados/metabolismo , Técnicas de Transferencia de Gen , Ictaluridae/genética , Ictaluridae/metabolismo , Oncorhynchus/genética , Salmón/genética
4.
Mol Ecol Resour ; 22(4): 1521-1528, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34800355

RESUMEN

Rodents are the largest order of mammals and contain several model organisms important to scientific research in a variety of fields, yet no large set of genomic markers have been designed for this group to date, hindering evolutionary studies into relationships of the group as a whole. Here we present a genomic probe set designed and optimized for rodents with a protocol that is easy to replicate with little laboratory investment. This design utilizes an anchored hybrid enrichment approach specifically targeting rodents to generate longer loci with a higher substitution rate than existing vertebrate probes to provide utility at various taxonomic levels. Using a test set of rodents from all five suborders, we successfully obtained alignments for 416 of the 418 target loci with an average of 1379 bp per locus and a total alignment of more than half a million base pairs. This genomic data set performed well in all phylogenetic analyses, especially in recent phylogenetic splits, with ample parsimony-informative sites within genera and even within species, showing more than four times as many single nucleotide polymorphisms per locus than a recent vertebrate ultraconserved elements study. Additional support is provided in resolving deeper clades in Rodentia. By providing this probe design, we hope that more laboratories can easily generate data for answering questions in rodents from species delimitation to understanding relationships among families in rapid radiations.


Asunto(s)
Genoma , Roedores , Animales , Genómica , Humanos , Filogenia , Roedores/genética , Análisis de Secuencia de ADN
5.
Genome Biol Evol ; 13(9)2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34432005

RESUMEN

Species are indisputable units for biodiversity conservation, yet their delimitation is fraught with both conceptual and methodological difficulties. A classic example is the taxonomic controversy surrounding the Gila robusta complex in the lower Colorado River of southwestern North America. Nominal species designations were originally defined according to weakly diagnostic morphological differences, but these conflicted with subsequent genetic analyses. Given this ambiguity, the complex was re-defined as a single polytypic unit, with the proposed "threatened" status under the U.S. Endangered Species Act of two elements being withdrawn. Here we re-evaluated the status of the complex by utilizing dense spatial and genomic sampling (n = 387 and >22 k loci), coupled with SNP-based coalescent and polymorphism-aware phylogenetic models. In doing so, we found that all three species were indeed supported as evolutionarily independent lineages, despite widespread phylogenetic discordance. To juxtapose this discrepancy with previous studies, we first categorized those evolutionary mechanisms driving discordance, then tested (and subsequently rejected) prior hypotheses which argued phylogenetic discord in the complex was driven by the hybrid origin of Gila nigra. The inconsistent patterns of diversity we found within G. robusta were instead associated with rapid Plio-Pleistocene drainage evolution, with subsequent divergence within the "anomaly zone" of tree space producing ambiguities that served to confound prior studies. Our results not only support the resurrection of the three species as distinct entities but also offer an empirical example of how phylogenetic discordance can be categorized within other recalcitrant taxa, particularly when variation is primarily partitioned at the species level.


Asunto(s)
Cyprinidae , Ríos , Animales , Colorado , Cyprinidae/genética , Filogenia , Incertidumbre
6.
Transgenic Res ; 30(2): 185-200, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33792795

RESUMEN

Channel catfish (Ictalurus punctatus) is the primary culture species in the US along with its hybrid made with male blue catfish, I. furcatus. In an effort to improve the nutritional value of channel catfish, the masou salmon Δ5-desaturase like gene (D5D) driven by the common carp beta-actin promoter (ßactin) was inserted into channel catfish. The objectives of this study were to determine the effectiveness of ßactin-D5D for improving n-3 fatty acid production in F1 transgenic channel catfish, as well as examine pleiotropic effects on growth, proximate analysis, disease resistance, and other performance traits. Transgenic F1 channel catfish showed a 33% increase in the relative proportion of n-3 fatty acids coupled with a 15% decrease in n-6 fatty acids and a 17% decrease in n-9 fatty acids when compared to non-transgenic full-siblings (P < 0.01, P < 0.01, P < 0.01). However, while the relative proportion of n-3 fatty acids was achieved, the total amount of fatty acids in the transgenic fish decreased resulting in a reduction of all fatty acids. Insertion of the ßactin-D5D transgene into channel catfish also had large effects on the body composition, and growth of channel catfish. Transgenic channel catfish grew faster, were more disease resistant, had higher protein and moisture percentage, but lower fat percentage than full-sib controls. There were sex effects as performance changes were more dramatic and significant in males. The ßactin-D5D transgenic channel catfish were also more uniform in their fatty acid composition, growth and other traits.


Asunto(s)
Animales Modificados Genéticamente/crecimiento & desarrollo , delta-5 Desaturasa de Ácido Graso/metabolismo , Ácidos Grasos/metabolismo , Proteínas de Peces/metabolismo , Flavobacterium/fisiología , Ictaluridae/crecimiento & desarrollo , Transgenes , Animales , Animales Modificados Genéticamente/inmunología , Animales Modificados Genéticamente/metabolismo , Animales Modificados Genéticamente/microbiología , delta-5 Desaturasa de Ácido Graso/genética , Proteínas de Peces/genética , Ictaluridae/inmunología , Ictaluridae/metabolismo , Ictaluridae/microbiología
7.
Mar Biotechnol (NY) ; 23(1): 90-105, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33113010

RESUMEN

The bighead catfish (Clarias macrocephalus) and channel catfish (Ictalurus punctatus) are freshwater species in the Siluriformes order. C. macrocephalus has both gills and modified gill structures serving as an air-breathing organ (ABO), while I. punctatus does not possess such an organ, and cannot breathe in air, providing an excellent model for studying the molecular basis of ABO development in teleost fish. To investigate the critical time window for the development of air-breathing function, seven development stages were selected based on hypoxia challenge results, and RNA-seq was performed upon C. macrocephalus to compare with the non-air-breathing I. punctatus. Five-hundred million reads were generated and 25,239 expressed genes were annotated in C. macrocephalus. Among those, 8675 genes were differentially expressed across developmental stages. Comparative genomic analysis identified 1458 C. macrocephalus specific genes, which were absent in I. punctatus. Gene network and protein-protein interaction analyses identified 26 key hub genes involved in the air-breathing function. Three top candidate genes, mb, ngb, hbae, are mainly associated with oxygen carrying, oxygen binding, and heme binding activities. Our study provides a rich data set for exploring the genomic basis of air-breathing function in C. macrocephalus and offers insights into the adaption to hypoxic environments.


Asunto(s)
Adaptación Fisiológica/genética , Bagres/genética , Respiración/genética , Animales , Bagres/crecimiento & desarrollo , Bagres/metabolismo , Perfilación de la Expresión Génica , Genómica , Branquias/fisiología , Hipoxia , Oxígeno/metabolismo , Análisis de Secuencia de ARN
8.
Sci Rep ; 10(1): 22271, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33335280

RESUMEN

CRISPR/Cas9-based gene knockout in animal cells, particularly in teleosts, has proven to be very efficient with regards to mutation rates, but the precise insertion of exogenous DNA or gene knock-in via the homology-directed repair (HDR) pathway has seldom been achieved outside of the model organisms. Here, we succeeded in integrating with high efficiency an exogenous alligator cathelicidin gene into a targeted non-coding region of channel catfish (Ictalurus punctatus) chromosome 1 using two different donor templates (synthesized linear dsDNA and cloned plasmid DNA constructs). We also tested two different promoters for driving the gene, zebrafish ubiquitin promoter and common carp ß-actin promoter, harboring a 250-bp homologous region flanking both sides of the genomic target locus. Integration rates were found higher in dead fry than in live fingerlings, indicating either off-target effects or pleiotropic effects. Furthermore, low levels of mosaicism were detected in the tissues of P1 individuals harboring the transgene, and high transgene expression was observed in the blood of some P1 fish. This can be an indication of the localization of cathelicidin in neutrophils and macrophage granules as also observed in most antimicrobial peptides. This study marks the first use of CRISPR/Cas9 HDR for gene integration in channel catfish and may contribute to the generation of a more efficient system for precise gene integration in catfish and other aquaculture species, and the development of gene-edited, disease-resistant fish.


Asunto(s)
Caimanes y Cocodrilos/genética , Péptidos Catiónicos Antimicrobianos/genética , Sistemas CRISPR-Cas/genética , Bagres/genética , Animales , Bagres/crecimiento & desarrollo , Edición Génica , Técnicas de Sustitución del Gen , Marcación de Gen/métodos , Genoma/genética , ARN Guía de Kinetoplastida/genética , Reparación del ADN por Recombinación/genética , Catelicidinas
9.
Ecol Evol ; 10(13): 6477-6493, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32724527

RESUMEN

The delimitation of species boundaries, particularly those obscured by reticulation, is a critical step in contemporary biodiversity assessment. It is especially relevant for conservation and management of indigenous fishes in western North America, represented herein by two species with dissimilar life histories codistributed in the highly modified Colorado River (i.e., flannelmouth sucker, Catostomus latipinnis; bluehead sucker, C. (Pantosteus) discobolus). To quantify phylogenomic patterns and examine proposed taxonomic revisions, we first employed double-digest restriction site-associated DNA sequencing (ddRAD), yielding 39,755 unlinked SNPs across 139 samples. These were subsequently evaluated with multiple analytical approaches and by contrasting life history data. Three phylogenetic methods and a Bayesian assignment test highlighted similar phylogenomic patterns in each, but with considerable difference in presumed times of divergence. Three lineages were detected in bluehead sucker, supporting elevation of C. (P.) virescens to species status and recognizing C. (P.) discobolus yarrowi (Zuni bluehead sucker) as a discrete entity. Admixture in the latter necessitated a reevaluation of its contemporary and historic distributions, underscoring how biodiversity identification can be confounded by complex evolutionary histories. In addition, we defined three separate flannelmouth sucker lineages as ESUs (evolutionarily significant units), given limited phenotypic and genetic differentiation, contemporary isolation, and lack of concordance (per the genealogical concordance component of the phylogenetic species concept). Introgression was diagnosed in both species, with the Little Colorado and Virgin rivers in particular. Our diagnostic methods, and the agreement of our SNPs with previous morphological, enzymatic, and mitochondrial work, allowed us to partition complex evolutionary histories into requisite components, such as isolation versus secondary contact.

10.
Evol Appl ; 13(6): 1400-1419, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32684966

RESUMEN

Admixture in natural populations is a long-standing management challenge, with population genomic approaches offering means for adjudication. We now more clearly understand the permeability of species boundaries and the potential of admixture for promoting adaptive evolution. These issues particularly resonate in western North America, where tectonism and aridity have fragmented and reshuffled rivers over millennia, in turn promoting reticulation among endemic fishes, a situation compounded by anthropogenic habitat modifications and non-native introductions. The melding of historic and contemporary admixture has both confused and stymied management. We underscore this situation with a case study that quantifies basin-wide admixture among a group of native and introduced fishes by employing double-digest restriction site-associated DNA (ddRAD) sequencing. Our approach: (a) quantifies the admixed history of 343 suckers (10 species of Catostomidae) across the Colorado River Basin; (b) gauges admixture within the context of phylogenetic distance and "ecological specialization"; and (c) extrapolates potential drivers of introgression across hybrid crosses that involve endemic as well as invasive species. Our study extends across an entire freshwater basin and expands previous studies more limited in scope both geographically and taxonomically. Our results detected admixture involving all 10 species, with habitat alterations not only accelerating the breakdown of reproductive isolation, but also promoting introgression. Hybridization occurred across the genus despite phylogenetic distance, whereas introgression was only detected within subgenera, implicating phylogenetic distance and/or ecological specialization as drivers of reproductive isolation. Understanding the extent of admixture and reproductive isolation across multiple species serves to disentangle their reticulate evolutionary histories and provides a broadscale perspective for basin-wide conservation and management.

11.
Front Genet ; 11: 608325, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33552125

RESUMEN

Tra catfish (Pangasianodon hypophthalmus), also known as striped catfish, is a facultative air-breather that uses its swim bladder as an air-breathing organ (ABO). A related species in the same order (Siluriformes), channel catfish (Ictalurus punctatus), does not possess an ABO and thus cannot breathe in the air. Tra and channel catfish serve as great comparative models for investigating possible genetic underpinnings of aquatic to land transitions, as well as for understanding genes that are crucial for the development of the swim bladder and the function of air-breathing in tra catfish. In this study, hypoxia challenge and microtomy experiments collectively revealed critical time points for the development of the air-breathing function and swim bladder in tra catfish. Seven developmental stages in tra catfish were selected for RNA-seq analysis based on their transition to a stage that could live at 0 ppm oxygen. More than 587 million sequencing clean reads were generated, and a total of 21,448 unique genes were detected. A comparative genomic analysis between channel catfish and tra catfish revealed 76 genes that were present in tra catfish, but absent from channel catfish. In order to further narrow down the list of these candidate genes, gene expression analysis was performed for these tra catfish-specific genes. Fourteen genes were inferred to be important for air-breathing. Of these, HRG, GRP, and CX3CL1 were identified to be the most likely genes related to air-breathing ability in tra catfish. This study provides a foundational data resource for functional genomic studies in air-breathing function in tra catfish and sheds light on the adaptation of aquatic organisms to the terrestrial environment.

12.
BMC Evol Biol ; 18(1): 86, 2018 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-29879898

RESUMEN

BACKGROUND: Porous species boundaries can be a source of conflicting hypotheses, particularly when coupled with variable data and/or methodological approaches. Their impacts can often be magnified when non-model organisms with complex histories of reticulation are investigated. One such example is the genus Catostomus (Osteichthys, Catostomidae), a freshwater fish clade with conflicting morphological and mitochondrial phylogenies. The former is hypothesized as reflecting the presence of admixed genotypes within morphologically distinct lineages, whereas the latter is interpreted as the presence of distinct morphologies that emerged multiple times through convergent evolution. We tested these hypotheses using multiple methods, to including multispecies coalescent and concatenated approaches. Patterson's D-statistic was applied to resolve potential discord, examine introgression, and test the putative hybrid origin of two species. We also applied naïve binning to explore potential effects of concatenation. RESULTS: We employed 14,007 loci generated from ddRAD sequencing of 184 individuals to derive the first highly supported nuclear phylogeny for Catostomus. Our phylogenomic analyses largely agreed with a morphological interpretation,with the exception of the placement of Xyrauchen texanus, which differs from both morphological and mitochondrial phylogenies. Additionally, our evaluation of the putative hybrid species C. columbianus revealed a lack introgression and instead matched the mitochondrial phylogeny. Furthermore, D-statistic tests clarified all discrepancies based solely on mitochondrial data, with agreement among topologies derived from concatenation and multispecies coalescent approaches. Extensive historic introgression was detected across six species-pairs. Potential endemism in the Virgin and Little Colorado Rivers was also apparent, and the former genus Pantosteus was derived as monophyletic, save for C. columbianus. CONCLUSIONS: Complex reticulated histories detected herein support the hypothesis that introgression was responsible for conflicts that occurred within the mitochondrial phylogeny, and explains discrepancies found between it and previous morphological phylogenies. Additionally, the hybrid origin of C. columbianus was refuted, but with the caveat that more fine-grain sampling is still needed. Our diverse phylogenomic approaches provided largely concordant results, with naïve binning useful in exploring the single conflict. Considerable diversity was found within Catostomus across southwestern North America, with two drainages [Virgin River (UT) and Little Colorado River (AZ)] reflecting unique composition.


Asunto(s)
Cipriniformes/clasificación , Filogenia , Animales , Cipriniformes/genética , ADN Mitocondrial/genética , Evolución Molecular , Geografía , Especificidad de la Especie , Estados Unidos
13.
Mar Biotechnol (NY) ; 20(3): 324-342, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29679251

RESUMEN

Repressible knockdown approaches were investigated to manipulate for transgenic sterilization in channel catfish, Ictalurus punctatus. Two primordial germ cell (PGC) marker genes, nanos and dead end, were targeted for knockdown and an off-target gene, vasa, was monitored. Two potentially copper-sensitive repressible promoters, yeast ctr3 (M) and ctr3-reduced (Mctr), were coupled with four knockdown strategies separately including: ds-sh RNA targeting the 5' end (N1) or 3' end (N2) of channel catfish nanos, full-length cDNA sequence of channel catfish nanos for overexpression (cDNA), and ds-sh RNA-targeting channel catfish dead end (DND). Each construct had an untreated group and treated group with copper sulfate as the repressor compound. Spawning rates of full-sibling P1 fish exposed or not exposed to the constructs as treated and untreated embryos were 85 and 54%, respectively, indicating potential sterilization of fish and repression of the constructs. In F1 fish, mRNA expressions of PGC marker genes for most constructs were downregulated in the untreated group and the knockdown was repressed in the treated group. Gonad development in transgenic, untreated F1 channel catfish was reduced compared to non-transgenic fish for MctrN2, MN1, MN2, and MDND. For 3-year-old adults, gonad size in the transgenic untreated group was 93.4% smaller than the non-transgenic group for females and 92.3% for males. However, mean body weight of transgenic females (781.8 g) and males (883.8 g) was smaller than of non-transgenic counterparts (984.2 and 1254.3 g) at 3 years of age, a 25.8 and 41.9% difference for females and males, respectively. The results indicate that repressible transgenic sterilization is feasible for reproductive control of fish, but negative pleiotropic effects can result.


Asunto(s)
Animales Modificados Genéticamente/metabolismo , Embrión no Mamífero/metabolismo , Células Germinativas/metabolismo , Ictaluridae/metabolismo , Animales , Animales Modificados Genéticamente/genética , Cobre/metabolismo , Ictaluridae/genética , Reacción en Cadena de la Polimerasa , Interferencia de ARN , Reproducción/genética , Reproducción/fisiología , Esterilización Reproductiva/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...