Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 9(1): 4023, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30279464

RESUMEN

Knowing the distribution of a magnetic field in bulk materials is important for understanding basic phenomena and developing functional magnetic materials. Microscopic imaging techniques employing X-rays, light, electrons, or scanning probe methods have been used to quantify magnetic fields within planar thin magnetic films in 2D or magnetic vector fields within comparable thin volumes in 3D. Some years ago, neutron imaging has been demonstrated to be a unique tool to detect magnetic fields and magnetic domain structures within bulk materials. Here, we show how arbitrary magnetic vector fields within bulk materials can be visualized and quantified in 3D using a set of nine spin-polarized neutron imaging measurements and a novel tensorial multiplicative algebraic reconstruction technique (TMART). We first verify the method by measuring the known magnetic field of an electric coil and then investigate the unknown trapped magnetic flux within the type-I superconductor lead.

2.
Ultramicroscopy ; 159 Pt 2: 278-84, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26141253

RESUMEN

The evolution of phase separation and ordering processes determines the structure and properties of Ni-based superalloys. Here we use atom probe tomography to clarify the origin of γ particles occurring in ordered (L12) γ' precipitates in a Ni86.1Al8.5Ti5.4 alloy. Particularly, we elucidate the evolution from nanoscaled Ni-rich heterogeneities (Ni-rich clusters) to γ spheres and then γ plates inside γ' precipitates from the compositional and the thermodynamic point of view. We find that Ni supersaturation of γ' precipitates is relieved by formation of Ni-rich clusters, which results in an energetically more favorable state. Subsequently, coalescence introduces necking between the Ni-rich clusters and leads to the formation of γ particles. Our results demonstrate that phase separation of γ' precipitates is characterized by different stages with various governing driving forces.

3.
Sci Rep ; 5: 10921, 2015 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-26043280

RESUMEN

Lithium/sulphur batteries are promising candidates for future energy storage systems, mainly due to their high potential capacity. However low sulphur utilization and capacity fading hinder practical realizations. In order to improve understanding of the system, we investigate Li/S electrode morphology changes for different ageing steps, using X-ray phase contrast tomography. Thereby we find a strong decrease of sulphur loading after the first cycle, and a constant loading of about 15% of the initial loading afterwards. While cycling, the mean sulphur particle diameters decrease in a qualitatively similar fashion as the discharge capacity fades. The particles spread, migrate into the current collector and accumulate in the upper part again. Simultaneously sulphur particles lose contact area with the conducting network but regain it after ten cycles because their decreasing size results in higher surface areas. Since the capacity still decreases, this regain could be associated with effects such as surface area passivation and increasing charge transfer resistance.

4.
Rev Sci Instrum ; 86(4): 043702, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25933863

RESUMEN

We present an experimental approach to study the three-dimensional microstructure of gas diffusion layer (GDL) materials under realistic compression conditions. A dedicated compression device was designed that allows for synchrotron-tomographic investigation of circular samples under well-defined compression conditions. The tomographic data provide the experimental basis for stochastic modeling of nonwoven GDL materials. A plain compression tool is used to study the fiber courses in the material at different compression stages. Transport relevant geometrical parameters, such as porosity, pore size, and tortuosity distributions, are exemplarily evaluated for a GDL sample in the uncompressed state and for a compression of 30 vol.%. To mimic the geometry of the flow-field, we employed a compression punch with an integrated channel-rib-profile. It turned out that the GDL material is homogeneously compressed under the ribs, however, much less compressed underneath the channel. GDL fibers extend far into the channel volume where they might interfere with the convective gas transport and the removal of liquid water from the cell.

5.
Opt Express ; 23(1): 301-11, 2015 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-25835677

RESUMEN

A neutron transport system for the planned imaging instrument ODIN at the future European Spallation Source (ESS) based on neutron optical components was designed and optimized. Different ways of prompt pulse suppression were studied. The spectral performance of the optimal neutron guide configuration is presented. In addition, the influence of the gaps in the guide system needed for the required chopper configuration was investigated. Given that the requirements for an imaging instrument located on a long guide system and hosting a complex chopper system are extremely demanding in terms of spectral and divergence needs, this study can be beneficial for a wide range of instruments in various ways.

6.
Soft Matter ; 10(26): 4711-6, 2014 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-24854899

RESUMEN

The present study is based on the idea of understanding the rupture of films in metal foams by studying free standing metallic films as a model system. Liquid dynamics, the velocity of the rupturing material as well as the behaviour of ceramic particles inside the melt were analysed optically ex situ and by synchrotron X-ray radiography in situ. It was found that the resistance of films to rupture is mainly based on the interaction between solid particles and an immobile oxide skin, the formation of which depends on the oxygen content of the surrounding atmosphere and the presence of magnesium.

7.
Soft Matter ; 10(36): 6955-62, 2014 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-24819033

RESUMEN

Complex liquid structures such as metallic foams were produced in a furnace that allowed in situ X-ray monitoring of the evolution of the structure and distribution of the liquid in the foam. The experiments were carried out during parabolic flights which provided varying levels of gravity. The evolution of the characteristic liquid fraction profiles due to gravity induced drainage was measured and analysed in terms of the foam drainage equation, obtaining viscosity and surface tension by fitting solutions of the equation to the experimental data. The surface tension of the melt in the foam was decreased up to 40%. Effective viscosities of up to 139 times the viscosity of a pure bulk melt were observed. These effects could be attributed to the smaller influence of solid particles dispersed in the melt and the larger influence of the complex foam structure.

8.
J Synchrotron Radiat ; 20(Pt 5): 809-10, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23955047

RESUMEN

A set-up for simultaneous imaging and diffraction that yields radiograms with up to 200 frames per second and 5.6 µm effective pixel size is presented. Tomograms and diffractograms are acquired together in 10 s. Two examples illustrate the attractiveness of combining these methods at the EDDI beamline for in situ studies.

9.
Ultramicroscopy ; 132: 227-32, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23588067

RESUMEN

In the solution treated state Ni-Cr-Mo based alloys exhibit short-range order characterized by the appearance of diffuse intensity spots in electron diffraction patterns at {1 ½ 0} positions. This short-range order appears due to of the formation of chemical heterogeneities. In the present work we report on the investigation of short-range order in Ni-33 at% Cr and Ni-16.7 at% Cr-16.7 at% Mo alloys using transmission electron microscopy. Chemical heterogeneities and their sizes are analyzed by statistical methods applied to three-dimensional atom probe data obtained on the same alloys. The obtained chemical heterogeneities are correlated to regions of short-range order in Ni-33 at% Cr and Ni-16.7 at% Cr-16.7 at% Mo alloys.

10.
Ultramicroscopy ; 132: 216-21, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23298536

RESUMEN

The addition of 200 ppm strontium to an Al-10 wt% Si casting alloy changes the morphology of the eutectic silicon phase from coarse plate-like to fine fibrous networks. In order to clarify this modification mechanism the location of Sr within the eutectic Si phase has been investigated by a combination of high-resolution methods. Whereas three-dimensional atom probe tomography allows us to visualise the distribution of Sr on the atomic scale and to analyse its local enrichment, transmission electron microscopy yields information about the crystallographic nature of segregated regions. Segregations with two kinds of morphologies were found at the intersections of Si twin lamellae: Sr-Al-Si co-segregations of rod-like morphology and Al-rich regions of spherical morphology. Both are responsible for the formation of a high density of multiple twins and promote the anisotropic growth of the eutectic Si phase in specific crystallographic directions during solidification. The experimental findings are related to the previously postulated mechanism of "impurity induced twinning".

11.
Nat Commun ; 2: 298, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21540840

RESUMEN

The complex transport processes contributing to sintering are not yet fully understood, partially because in-situ observations of sintering in three dimensions (3D) are very difficult. Here we report a novel experiment in which monocrystalline copper spheres are first marked with microscopic boreholes drilled using a focused ion beam, after which high-resolution synchrotron X-ray tomography is carried out to measure translational, rolling and intrinsic rotation movements of some hundred spheres during sintering. Unlike in 1D and 2D systems, we show that, in 3D, intrinsic rotations are more pronounced than angular rolling rearrangements of the particle centres and become the dominant mechanism of particle movement. We conclude that in addition to the well-known neck growth and centre approach mechanisms, grain boundary sliding caused by the different crystallographic orientations of the individual spheres occurs.

12.
Ultramicroscopy ; 111(6): 619-22, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21216101

RESUMEN

Splat-quenched, as-cast and aged (2h at 600 °C after casting) AlCoCrCuFeNi high entropy alloys were investigated by means of transmission electron microscopy and three-dimensional atom probe (3D-AP). 3D-AP revealed anti-correlated fluctuations of the Cr and Fe-Co compositions in Cr-Fe-Co-rich regions of the as-cast alloy. The ferromagnetic behavior of AlCoCrCuFeNi high entropy alloy was correlated with the decomposition of the Cr-Fe-Co-rich regions into ferromagnetic Fe-Co-rich and antiferromagnetic Cr-rich domains, the size of which was determined by statistical analysis of 3D-AP data. The splat-quenched alloy showed a softer magnetic behavior as compared to the as-cast and aged alloys. The aged alloy possessed a higher saturation magnetization and coercivity as compared to the as-cast alloy.

13.
Ultramicroscopy ; 111(6): 706-10, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21215523

RESUMEN

Molybdenum and its alloys are potential materials for high-temperature applications. However, molybdenum is susceptible to embrittlement because of oxygen segregation at the grain boundaries. In order to alleviate the embrittlement small amounts of zirconium were alloyed to a solid solution of Mo-1.5Si alloy. Two Mo-based alloys, namely Mo-1.5Si and Mo-1.5Si-1Zr, were investigated by the complementary high-resolution methods transmission electron microscopy and atom probe tomography. The Mo-1.5Si alloy shows a polycrystalline structure with two silicon-rich intermetallic phases Mo(5)Si(3) and Mo(3)Si located at the grain boundaries and within the grains. In addition, small clusters with up to 10 at% Si were found within the molybdenum solid solution. Addition of a small amount of zirconium to Mo-1.5Si leads to the formation of two intermetallic phases Mo(2)Zr and MoZr(2), which are located at the grain boundaries as well as within the interior of the grain. Transmission electron microscopy shows that small spherical Mo-Zr-rich precipitates (<10nm) decorate the grain boundaries. The stoichiometry of the small precipitates was identified as Mo(2)Zr by atom probe tomography. No Si-enriched small precipitates were detected in the Mo-1.5Si-1Zr alloy. It is concluded that the presence of zirconium hinders their formation.

14.
Ultramicroscopy ; 111(6): 695-700, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21232864

RESUMEN

Strontium-modified Al-15 wt%Si casting alloys were investigated after 5 and 60 min of melt holding. The eutectic microstructures were studied using complementary methods at different length scales: focused ion beam-energy selective backscattered tomography, transmission electron microscopy and 3D atom probe. Whereas the samples after 5 min of melt holding show that the structure of eutectic Si changes into a fine fibrous morphology, the increase of prolonged melt holding (60 min) leads to the loss of Sr within the alloy with an evolution of an unmodified eutectic microstructure displaying coarse interconnected Si plates. Strontium was found at the Al/Si eutectic interfaces on the side of the eutectic Al region, measured by 3D atom probe. The new results obtained using 3D atom probe shed light on the location of Sr within the Al-Si eutectic microstructure.

15.
Ultramicroscopy ; 111(6): 701-5, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21159436

RESUMEN

Early stages of cluster formation in an Al-Si-Mg alloy were investigated by atom probe tomography and evaluated by a newly developed statistical method based on the nearest neighbour distributions. After solutionising and quenching, an alloy sample was naturally aged for one week. The atom probe data then measured was analysed for Mg, Si or Mg-Si clusters. For comparison specimen artificial aged with well developed precipitates was also investigated. A general approach for the analysis of density spectra was set up, which reduced the problem to the solution of an integral equation. Application of the method to the atom probe data set allowed us to detect clusters and to evaluate the atomic fractions within these clusters. This is also possible for an arbitrary number of nucleated phases. The higher-order next nearest neighbour distributions were used for the estimation of cluster sizes. Combining the density distribution method with a Monte Carlo simulation we found very small Si-Si and Mg-Mg clusters consisting of only a few atoms in the naturally aged state.

16.
Nat Commun ; 1: 125, 2010 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-21119638

RESUMEN

Magnetic domains have been the subject of much scientific investigation since their theoretical existence was first postulated by P.-E. Weiss over a century ago. Up to now, the three-dimensional (3D) domain structure of bulk magnets has never been observed owing to the lack of appropriate experimental methods. Domain analysis in bulk matter thus remains one of the most challenging tasks in research on magnetic materials. All current domain observation methods are limited to studying surface domains or thin magnetic films. As the properties of magnetic materials are strongly affected by their domain structure, the development of a technique capable of investigating the shape, size and distribution of individual domains in three dimensions is of great importance. Here, we show that the novel technique of Talbot-Lau neutron tomography with inverted geometry enables direct imaging of the 3D network of magnetic domains within the bulk of FeSi crystals.

17.
J Xray Sci Technol ; 18(4): 429-41, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21045279

RESUMEN

Time-resolved imaging with penetrating radiation has an outstanding scientific value but its realisation requires a high density of photons as well as corresponding fast X-ray image detection schemes. Bending magnets and insertion devices of third generation synchrotron light sources offer a polychromatic photon flux density which is high enough to perform hard X-ray imaging with a spatio-temporal resolution up to the µm-µs range. Existing indirect X-ray image detectors commonly used at synchrotron light sources can be adapted for fast image acquisition by employing CMOS-based digital high speed cameras already available on the market. Selected applications from life sciences and materials research underline the high potential of this high-speed hard X-ray microimaging approach.


Asunto(s)
Radiografía/métodos , Sincrotrones , Radiografía/instrumentación , Grabación en Video
18.
J Synchrotron Radiat ; 16(Pt 4): 524-7, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19535867

RESUMEN

A radiation furnace that covers the temperature range from room temperature up to 1800 K has been designed and constructed for in situ synchrotron microtomography. The furnace operates under a vacuum or under any inert gas atmosphere. The two 1000 W halogen heating lamps are water- and air-cooled. The samples are located at the focus of these lamp reflectors on a rotary feedthrough that is connected to a driving rotation stage below the furnace. The X-ray beam penetrates the furnace through two X-ray-transparent vacuum-sealed windows. Further windows can be used for temperature control, sample changing and gas inflow and outflow.


Asunto(s)
Tomografía/instrumentación , Diseño de Equipo , Calor , Microscopía Electrónica de Rastreo , Sincrotrones , Rayos X
19.
J Synchrotron Radiat ; 16(Pt 3): 432-4, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19395811

RESUMEN

Investigations of pore coalescence and individual cell wall collapse in an expanding liquid metal foam by means of X-ray radioscopy with spatio-temporal micro-resolution are reported. By using white synchrotron radiation for imaging, the rupture of a film and the subsequent merger of two neighbouring bubbles could be recorded with a time sampling rate of 40000 frames s(-1) (25 micros exposure time) and a spatial sampling rate of 20 microm. The rupture time of a cell wall was found to be in the range of 300 micros. This value is in agreement with theoretical considerations which assume an inertia-dominated rupture time of cell walls in liquid metal foams.


Asunto(s)
Gases/química , Ensayo de Materiales/métodos , Metales/química , Sincrotrones , Porosidad , Soluciones/química , Espectrometría por Rayos X
20.
Ultramicroscopy ; 109(5): 585-92, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19162402

RESUMEN

Age hardening in a purely ternary Al-Mg0.4-Si0.4 (0.44 at% Mg, 0.38at%Si) alloy that is similar to AA6060 was investigated by hardness measurement, TEM and three-dimensional atom probe (3D-AP). In particular, the effect of natural pre-ageing before artificial ageing, which is known to have a positive effect in this alloy, was studied by comparing three different conditions: natural ageing only, artificial ageing for 1.5h at 180 degrees C only and combined natural pre-ageing and subsequent artificial ageing for 1.5h at 180 degrees C. Natural ageing influences the mechanical properties significantly. Naturally aged alloys exhibit a hardening response that is governed by the presence of small clusters. Subsequent artificial ageing of naturally aged specimens increases the value of peak hardness, which is attributed to the increase of the number density of needle-shaped precipitates as compared to the samples without natural ageing. It is assumed that besides these precipitates, the small Si clusters formed at room-temperature storage remain stable during artificial ageing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...