Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 9528, 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37308562

RESUMEN

Annular fin is a particular mechanical setup for heat transfer that varies radially and frequently utilize in applied thermal engineering. Addition of annular fin to working apparatus enhance the surface area in contact with surrounding fluid. Other potential areas of fin installation are radiators, power plant heat exchangers and also it plays significant role in sustainable energy technologies. The major objective of this research is to introduce an efficient annular fin energy model influenced by thermal radiation, magnetic forces, coefficient of thermal conductivity, heating source with addition of modified Tiwari-Das model. Then, numerical treatment performed to acquire the desired efficiency. From the results, it is scrutinized that the fin efficiency significantly improved by strengthening the physical strength of [Formula: see text] and [Formula: see text] and the use of ternary nanofluid make it more efficient. Addition of heating source [Formula: see text] make the fin more efficient and radiative number is better to cool it. The role of ternary nanofluid observed dominant throughout the analysis and the results validated with existing data.

2.
ACS Omega ; 8(22): 19926-19938, 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37305249

RESUMEN

Applications: Flow-through permeable media have a wide range of applications in biomedical engineering, geophysical fluid dynamics, and recovery and refinement of underground reservoirs and large-scale chemical applications such as filters, catalysts, and adsorbents. Therefore, this study on a nanoliquid in a permeable channel is conducted under physical constraints. Purpose and Methodology: The key purpose of this research is to introduce a new biohybrid nanofluid model (BHNFM) with (Ag-G)hybridnanoparticles with additional significant physical effects of quadratic radiation, resistive heating, and magnetic field. The flow configuration is set between the expanding/contracting channels, which has broad applications, especially in biomedical engineering. The modified BHNFM was achieved after the implementation of the bitransformative scheme, and then to obtain physical results of the model, the variational iteration method was applied. Core Findings: Based on a thorough observation of the presented results, it is determined that the biohybrid nanofluid (BHNF) is more effective than mono-nano BHNFs in controlling fluid movement. The desired fluid movement for practical purposes can be achieved by varying the wall contraction number (α1 = -0.5, -1.0, -1.5, -2.0) and with stronger magnetic effects (M = 1.0,9.0,17.0,25.0). Furthermore, increasing the number of pores on the surface of the wall causes the BHNF particles to move very slowly. The temperature of the BHNF is affected by the quadratic radiation (Rd), heating source (Q1), and temperature ratio number (θr), and this is a dependable approach to acquire a significant amount of heat. The findings of the current study can aid in a better understanding of parametric predictions in order to produce exceptional heat transfer in BHNFs and suitable parametric ranges to control fluid flow inside the working area. The model results would also be useful for individuals working in the fields of blood dynamics and biomedical engineering.

3.
J Oleo Sci ; 71(10): 1469-1480, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36184461

RESUMEN

Flavonoid compounds are a group of polyphenolic molecules that are in vegetables, fruit, and grain. Laboratory studies and epidemiological investigations have indicated diverse beneficial biochemical properties of flavonoids, including anticancer, anti-inflammation, anti-oxidation, and anti-osteoporosis. We have recorded results for the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) Reductase and urease enzymes at the µM level. In this search, inhibition results of Panicolin on HMG-CoA reductase and tyrosinase enzymes recorded lower values of 113.98±14.38 and 2.57±0.20 µg /mL, respectively. Additionally, inhibition results of Panicolin on urease and α-amylase showed good values of 64.20±7.43 and 15.92±2.81 µg/mL, respectively. The chemical activities of panicolin against α-amylase, urease, tyrosinase, and HMG-CoA reductase, were determined by performing the molecular modeling study. The anti-cancer activities of panicolin were investigated against HL-60, THP-1, K562, and Molt-4 cell lines and IC50 values of Panicolin on these cell lines were obtained 12.94±1.04, 63.17±5.81, 15.05±1.02, and 10.84±0.65 µg/mL, respectively. The chemical activities of this compound against some of the expressed surface receptor proteins (Platelet-activating factor receptor, CD13, transferrin receptor, and CD44) in the cell lines were evaluated using molecular modeling calculations. The results revealed the possible interactions and their features at an atomic level. The docking scores suggested that panicolin has a significant binding affinity to the enzymes and proteins. Moreover, this compound constructed strong contacts with the enzymes and receptors. Therefore, panicolin could be a potential inhibitor for enzymes and cancer cells.


Asunto(s)
Leucemia , Neoplasias , Coenzima A , Coenzimas , Flavonoides , Humanos , Monofenol Monooxigenasa , Oxidorreductasas , Receptores de Transferrina , Ureasa , alfa-Amilasas
4.
Math Biosci Eng ; 19(10): 10176-10191, 2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-36031990

RESUMEN

Theoretical analysis of physical characteristics of unsteady, squeezing nanofluid flow is studied. The flow of nanofluid between two plates that placed parallel in a rotating system by keeping the variable physical properties: viscosity and thermal conductivity. It is analyzed by using Navier Stokes Equation, Energy Equation and Concentration equation. The prominent equations are transformed by virtue of suitable similarity transformation. Nanofluid model includes the important effects of Thermophoresis and Brownian motion. For analysis graphical results are drawn for verity parameters of our interest i.e., Injection parameter, Squeezing number, Prandtle number and Schmidt number are investigated for the Velocity field, Temperature variation and Concentration profile numerically. The findings underline that the parameter of skin friction increases when the Squeezing Reynolds number, Injection parameter and Prandtle number increases. However, it shows inverse relationship with Schmidt number and Rotation parameter. Furthermore, direct relationship of Nusselt number with injection parameter and Reynolds number is observed while its relation with Schmidt number, Rotation parameter, Brownian parameter and Thermophoretic parameter shows an opposite trend. The results are thus obtained through Parametric Continuation Method (PCM) which is further validated through BVP4c. Moreover, the results are tabulated and set forth for comparison of findings through PCM and BVP4c which shows that the obtained results correspond to each other.

5.
J Oleo Sci ; 71(7): 1031-1038, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35781255

RESUMEN

5-Pentylresorcinol is a type of the group of resorcinol compounds that is resorcinol in that has hydrogen atom at position 5 is replaced by a pentyl group. It has a role as a lichen metabolite. This compound showed excellent to good inhibitory activities against studied these enzymes with IC50 values of 65.96 µM for urease and 34.81 µM for tyrosinase. Standard compounds for enzymes had IC50 values of 1.94±0.24 µM against urease and 84.36±5.17 µM against tyrosinase. The IC50 of 5-pentylresorcinol against MCF7 cell line was 165.72 µg/mL; against Hs 578Bst cell line was 102.14 µg/mL; against Hs 319.T cell line was 12.34 µg/mL; and against UACC-3133 cell line was 73.07 µg/mL, respectively. The chemical activities of 5-pentylresorcinol against urease and tyrosinase were evaluated using the molecular modeling study. The anti-cancer activity of 5-pentylresorcinol was also investigated by treating the compound on the BRCT repeat region from the breast cancer-associated protein (BRCA1), and their interactions were assessed utilizing the molecular docking calculations. The results revealed the probable interactions and their characteristics at an atomic level. The docking scores of 5-pentylresorcinol against urease, tyrosinase, and BRCA1 are -3.073, -5.262, and -3.238 (kcal/mol), respectively.


Asunto(s)
Adenocarcinoma , Neoplasias de la Mama , Resorcinoles/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Femenino , Humanos , Simulación del Acoplamiento Molecular , Monofenol Monooxigenasa/química , Monofenol Monooxigenasa/metabolismo , Ureasa/metabolismo
6.
Materials (Basel) ; 15(5)2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35268907

RESUMEN

Polymeric nanocomposites have been outstanding functional materials and have garnered immense attention as sustainable materials to address multi-disciplinary problems. MXenes have emerged as a newer class of 2D materials that produce metallic conductivity upon interaction with hydrophilic species, and their delamination affords monolayer nanoplatelets of a thickness of about one nm and a side size in the micrometer range. Delaminated MXene has a high aspect ratio, making it an alluring nanofiller for multifunctional polymer nanocomposites. Herein, we have classified and discussed the structure, properties and application of major polysaccharide-based electroactive hydrogels (hyaluronic acid (HA), alginate sodium (SA), chitosan (CS) and cellulose) in biomedical applications, starting with the brief historical account of MXene's development followed by successive discussions on the synthesis methods, structures and properties of nanocomposites encompassing polysaccharides and MXenes, including their biomedical applications, cytotoxicity and biocompatibility aspects. Finally, the MXenes and their utility in the biomedical arena is deliberated with an eye on potential opportunities and challenges anticipated for them in the future, thus promoting their multifaceted applications.

7.
Int J Biol Macromol ; 208: 20-28, 2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35259437

RESUMEN

In this article we report a novel Ag NPs fabricated chitosan-agarose composite functionalized core-shell type Fe3O4 nanoparticle (Ag/CS-Agar@Fe3O4). The biogenic material was analyzed over a number of physicochemical methods like, FT-IR, FE-SEM, TEM, EDX, XRD, VSM and ICP-OES. In catalytic exploration we aimed the synthesis of diverse 2H-indazolo0-b]phthalazine-trione derivatives via one-pot three component coupling of phathalalhydrazide, dimedone and different aldehydes. It afforded good to excellent yields under solvent-less conditions. Robustness of the catalyst was justified by catalyst recyclability for consecutive 10 times, hot filtration and leaching tests. Again, biological activity of the material was evaluated by studying the antioxidant and cytotoxicity properties over lung and liver cancer cell lines. Antioxidant potential of Ag/CS-Agar@Fe3O4 was assessed by DPPH radical scavenging studies and the corresponding IC50 was found to be 96.57 µg/mL. Liver and lung cancer studies over Ag/CS-Agar@Fe3O4 was carried out by MTT assay against HepG2 and A549 cell lines. The corresponding IC50 values were found as 192.35 and 365.28 µg/mL respectively. % Cell viability of the nanomaterial decreased dose dependently over both the cell lines without any cytotoxicity on normal cell line. The results demonstrates Ag/CS-Agar@Fe3O4 nanocomposite to be an efficient chemotherapeutic drug against the lung and hepatocellular carcinoma cells.


Asunto(s)
Quitosano , Neoplasias Pulmonares , Nanopartículas de Magnetita , Nanocompuestos , Agar , Antioxidantes/uso terapéutico , Catálisis , Quitosano/química , Humanos , Hígado , Pulmón , Neoplasias Pulmonares/tratamiento farmacológico , Nanopartículas de Magnetita/química , Nanocompuestos/química , Ftalazinas/farmacología , Sefarosa/uso terapéutico , Espectroscopía Infrarroja por Transformada de Fourier
8.
Heliyon ; 8(12): e12326, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36590497

RESUMEN

Herein, a bio-inspired synthetic method for Ag NP adorned biofunctionalized magnetic nanocomposite has been demonstrated. In the procedure, Mentha longifolia flower extract was employed as a template for the green reduction of immobilized Ag ions to corresponding NPs and subsequent stabilization. The phytochemical modification also facilitated the Fe3O4 NPs to protect from self-aggregation. The as-synthesized Ag/Fe3O4 nanocomposite material was characterized by SEM, TEM, EDX, elemental mapping, VSM, XRD and ICP-OES methods. Towards the biological application, the material was first explored in the anti-oxidant study following DPPH assay and it exhibited a significant radical scavenging capacity. The application of Ag/Fe3O4 nanocomposite was further progressed in the anticancer study against standard human lung cancer cell lines (A549 and H358). Cytotoxicity of the material against the cell lines were determined in terms of % cell viability following MTT method and was found to decrease with increase in the material load.

9.
Molecules ; 26(11)2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34073408

RESUMEN

Despite the extensive use of carbon steel in all industrial sectors, particularly in the petroleum industry, its low corrosion resistance is an ongoing problem for these industries. In the current work, two malonyl dihydrazide derivatives, namely 2,2'-malonylbis (N-phenylhydrazine-1-carbothiamide (MBC) and N'1, N'3-bis(-2-hydroxybenzylidene) malonohydrazide (HBM), were examined as inhibitors for the carbon steel corrosion in 1.0 M HCl. Both MBC and HBM were characterised using thin-layer chromatography, elemental analysis, infrared spectroscopy, and nuclear magnetic resonance techniques. The corrosion tests were performed using mass loss measurements, polarisation curves, and electrochemical impedance spectroscopy. It is obtained from the mass loss studies that the optimal concentration for both inhibitors is 2.0 × 10-5 mol/L, and the inhibition efficiencies reached up to 90.7% and 84.5% for MBC and HBM, respectively. Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarisation (PDP) indicate an increased impedance in the presence of both MBC and HBM and mixed-type inhibitors, respectively. Both inhibitors can mitigate corrosion in the range of 298-328 K. Values of free energy changes obtained from the Langmuir model suggest that the inhibitors suppress the corrosion process principally by chemisorption. The computational investigations were conducted to identify the factors connected with the anti-corrosive properties of the examined inhibitors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...