Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Virus Evol ; 10(1): veae027, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38699215

RESUMEN

Since 2016, A(H5Nx) high pathogenic avian influenza (HPAI) virus of clade 2.3.4.4b has become one of the most serious global threats not only to wild and domestic birds, but also to public health. In recent years, important changes in the ecology, epidemiology, and evolution of this virus have been reported, with an unprecedented global diffusion and variety of affected birds and mammalian species. After the two consecutive and devastating epidemic waves in Europe in 2020-2021 and 2021-2022, with the second one recognized as one of the largest epidemics recorded so far, this clade has begun to circulate endemically in European wild bird populations. This study used the complete genomes of 1,956 European HPAI A(H5Nx) viruses to investigate the virus evolution during this varying epidemiological outline. We investigated the spatiotemporal patterns of A(H5Nx) virus diffusion to/from and within Europe during the 2020-2021 and 2021-2022 epidemic waves, providing evidence of ongoing changes in transmission dynamics and disease epidemiology. We demonstrated the high genetic diversity of the circulating viruses, which have undergone frequent reassortment events, providing for the first time a complete overview and a proposed nomenclature of the multiple genotypes circulating in Europe in 2020-2022. We described the emergence of a new genotype with gull adapted genes, which offered the virus the opportunity to occupy new ecological niches, driving the disease endemicity in the European wild bird population. The high propensity of the virus for reassortment, its jumps to a progressively wider number of host species, including mammals, and the rapid acquisition of adaptive mutations make the trend of virus evolution and spread difficult to predict in this unfailing evolving scenario.

2.
Emerg Infect Dis ; 29(4): 852-855, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36918379

RESUMEN

We found highly pathogenic avian influenza A(H5N1) virus clade 2.3.4.4b associated with meningoencephalitis in a stranded harbor porpoise (Phocoena phocoena). The virus was closely related to strains responsible for a concurrent avian influenza outbreak in wild birds. This case highlights the potential risk for virus spillover to mammalian hosts.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Aviar , Phocoena , Animales , Gripe Aviar/epidemiología , Subtipo H5N1 del Virus de la Influenza A/genética , Suecia/epidemiología , Mamíferos , Filogenia
3.
Avian Pathol ; 51(3): 257-266, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35285764

RESUMEN

The present paper describes the investigation of the first outbreaks of adenoviral gizzard erosions (AGE) in Sweden, in five broiler flocks. The investigation included whole viral genome sequencing and investigation of genomic organization and sequence relationships with other adenoviruses. All five flocks had a history of decreased growth and uneven size of birds since 9-10 days of age. Macroscopically, lesions consistent with AGE (detached koilin layers, discolouration, bleeding, erosions) were identified in gizzards in all five flocks. In four flocks histology was performed, and degeneration and inflammation of the koilin layer and gizzard mucosa were identified in all four. In one flock, intranuclear inclusion bodies typical for fowl adenovirus (FAdV) were detected in trapped epithelial cells in the koilin layer. In four flocks in situ hybridization was performed, and cells positive for FAdV serotype 1 (FAdV-1) were demonstrated in the koilin layer and gizzard mucosa. FAdV species A (FAdV-A) was detected in gizzard, liver, caecal tonsils and bursa of Fabricius by polymerase chain reaction (PCR) and sequencing. Ten out of ten examined parent flocks of the affected chickens were seropositive for FAdV, indicating former or on-going infection. However, FAdV was not detected in embryos from seropositive parent flocks and thus vertical transmission was not demonstrated. The entire nucleotide sequence of one sample was determined and found to be 43,856 base pairs (bp) in length. The genome sequence and organization were found to be similar to that of the reference apathogenic avian adenovirus "chicken embryo lethal orphan" (CELO). RESEARCH HIGHLIGHTSAGE in Swedish broilers: necropsy, histopathology, ISH, PCR, whole-genome sequencing.Whole FAdV-genome analysed: 43,856 bp, found to be most similar to CELO (U46933.1).Multiple point mutations, site insertions and deletions identified compared to CELO.Paper adds knowledge about European disease situation and pathogenic FAdV-strains.


Asunto(s)
Infecciones por Adenoviridae , Aviadenovirus , Adenovirus A Aviar , Enfermedades de las Aves de Corral , Adenoviridae , Infecciones por Adenoviridae/epidemiología , Infecciones por Adenoviridae/veterinaria , Animales , Aviadenovirus/genética , Embrión de Pollo , Pollos , Brotes de Enfermedades/veterinaria , Adenovirus A Aviar/genética , Molleja de las Aves/patología , Serogrupo , Suecia/epidemiología
4.
Genes (Basel) ; 11(8)2020 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-32784857

RESUMEN

Recombination is one of the major sources of genetic variation in viruses. RNA viruses, such as rabbit hemorrhagic disease virus (RHDV), are among the viruses with the highest recombination rates. Several recombination events have been described for RHDV, mostly as a consequence of their genomic architecture. Here, we undertook phylogenetic and recombination analyses of French and Swedish RHDV strains from 1994 to 2016 and uncovered a new intergenotypic recombination event. This event occurred in the late 1990s/early 2000s and involved nonpathogenic GI.3 strains as donors for the nonstructural part of the genome of these recombinants, while pathogenic GI.1d strains contributed to the structural part. These GI.3P-GI.1d recombinant strains did not entirely replace GI.1d (nonrecombinant) strains, but became the dominant strains in France and Sweden, likely due to a fitness advantage associated with this genomic architecture. GI.3P-GI.1d (P stands for polymerase) strains persisted until 2013 and 2016 in Sweden and France, respectively, and cocirculated with the new genotype GI.2 in France. Since strains from the first GI.2 outbreaks were GI.3P-GI.2, we hypothesize that GI.3P-GI.1d could be the parental strain. Our results confirm the outstanding recombination ability of RHDV and its importance in the evolution of lagoviruses, which was only revealed by studying complete genomic sequences.


Asunto(s)
Enfermedades de los Animales/epidemiología , Enfermedades de los Animales/virología , Infecciones por Caliciviridae/veterinaria , Virus de la Enfermedad Hemorrágica del Conejo/clasificación , Virus de la Enfermedad Hemorrágica del Conejo/genética , Recombinación Genética , Animales , Animales Salvajes , Evolución Molecular , Francia/epidemiología , Genoma Viral , Genotipo , Historia del Siglo XX , Filogenia , ARN Viral , Estudios Retrospectivos , Suecia/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...