Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(11): 8900-8918, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38426553

RESUMEN

Advanced spectroscopic techniques have been utilized to study the interaction between the laser dye coumarin 153 (C153) and graphene oxide (GO) nanoparticles. GO was synthesized using a modified Hummers' method and characterized by UV-vis spectroscopy, Raman laser spectroscopy, FTIR-ATR spectroscopy, FESEM, HR-TEM, and XRD techniques. The GO@C153 composite was formed by mixing two aqueous solutions of GO and C153 due to their strong interaction through stacking and hydrophobic interactions. In this case, GO acts as an effective fluorescence quencher for C153 molecules, which undergo H-type aggregation in the presence of GO. The Stern-Volmer equation and time-dependent fluorescence studies were utilized to analyse the mechanism of fluorescence quenching. According to the findings, both static and dynamic quenching processes are responsible for the reduction in fluorescence intensity. The effect of surfactants (both cetyltrimethylammonium p-toluenesulfonate (CTAT) and synthesized N,N'-dihexadecyl-N,N,N',N'-tetramethyl-N,N'-but-2-ynediyl-di-ammonium chloride (16-4-16)) on the aggregation and photophysical properties of the dye was investigated using surface tensiometry, conductometry, UV-vis absorption spectroscopy, steady-state fluorescence measurements, DLS, and time-dependent fluorescence spectroscopy. Surfactants change the microenvironment of the C153 dye, leading to spectrum shifting and a higher quantum yield, which causes a rapid rise in fluorescence intensity in the micellar medium. It has been noted that in a micellar medium rather than in an aqueous one, the luminous intramolecular charge transfer (ICT) state of C153 stabilises. Lastly, we investigated the photophysical behavior of the GO-C153-micelle ternary system and discovered that, in the presence of a micellar medium, the quenched and blue-shifted (H-type aggregation) fluorescence peak of C153 (in the presence of GO) began to intensify once more. The main goal of this work is to create an effective and fairly cost powerful fluorescence sensor. Additionally, the ternary system (GO-C153-micelle) analytical idea can be employed to identify the onset of micelle formation. In wastewater treatment analysis, the GO-C153-surfactant ternary system concept can also be used to regenerate the adsorbent (in this case, GO) from dye molecules by allowing the dye molecules to exit the adsorbent and enter the micellar medium.

2.
Soft Matter ; 19(41): 7995-8010, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37819269

RESUMEN

The formation of aggregates, which are widely used in the field of biochemistry and the medical industry, was studied with different compositions of alkyl betaine gemini surfactant (C14Ab) in conjugation with chlorpromazine hydrochloride (CPZ). The results were compared with those of a single-chain zwitterionic surfactant (C12DmCB) of the same type with CPZ. Dynamic light scattering (DLS), confocal laser scanning microscopy (CLSM), and transmission electron microscopy (TEM) methods were used to distinguish the aggregates for the CPZ/C14Ab system in aqueous solutions above a certain mole fraction of the drug CPZ (αCPZ = 0.2). Time-resolved fluorescence decay measurements of acridine orange revealed relative polarity near the head group regions of mixed micelle (CPZ/C14Ab and CPZ/C12DmCB) systems. The hydrophilic environment around the head group regions of the CPZ/C14Ab system was different from that in the case of the CPZ/C12DmCB system. On the other hand, several theoretical models were employed (Clint, Rubingh, Motomura, and SPB) for mixed micellar systems to elucidate the different interaction parameters. Such a systematic study of a zwitterionic gemini amphiphile and its interaction with other amphiphiles and an amphiphilic drug molecule is rare in the literature.


Asunto(s)
Antipsicóticos , Tensoactivos , Tensoactivos/química , Antipsicóticos/química , Clorpromazina/química , Agua/química , Fenómenos Químicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA