Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
PLoS Genet ; 16(11): e1009179, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33175853

RESUMEN

Gene therapy approaches for DMD using recombinant adeno-associated viral (rAAV) vectors to deliver miniaturized (or micro) dystrophin genes to striated muscles have shown significant progress. However, concerns remain about the potential for immune responses against dystrophin in some patients. Utrophin, a developmental paralogue of dystrophin, may provide a viable treatment option. Here we examine the functional capacity of an rAAV-mediated microutrophin (µUtrn) therapy in the mdx4cv mouse model of DMD. We found that rAAV-µUtrn led to improvement in dystrophic histopathology & mostly restored the architecture of the neuromuscular and myotendinous junctions. Physiological studies of tibialis anterior muscles indicated peak force maintenance, with partial improvement of specific force. A fundamental question for µUtrn therapeutics is not only can it replace critical functions of dystrophin, but whether full-length utrophin impacts the therapeutic efficacy of the smaller, highly expressed µUtrn. As such, we found that µUtrn significantly reduced the spacing of the costameric lattice relative to full-length utrophin. Further, immunostaining suggested the improvement in dystrophic pathophysiology was largely influenced by favored correction of fast 2b fibers. However, unlike µUtrn, µdystrophin (µDys) expression did not show this fiber type preference. Interestingly, µUtrn was better able to protect 2a and 2d fibers in mdx:utrn-/- mice than in mdx4cv mice where the endogenous full-length utrophin was most prevalent. Altogether, these data are consistent with the role of steric hindrance between full-length utrophin & µUtrn within the sarcolemma. Understanding the stoichiometry of this effect may be important for predicting clinical efficacy.


Asunto(s)
Terapia Genética/métodos , Fibras Musculares Esqueléticas/patología , Distrofia Muscular de Duchenne/terapia , Utrofina/uso terapéutico , Animales , Dependovirus/genética , Modelos Animales de Enfermedad , Distrofina/genética , Técnicas de Transferencia de Gen , Vectores Genéticos/genética , Células HEK293 , Humanos , Ratones , Ratones Endogámicos mdx , Microscopía Electrónica , Contracción Muscular , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/ultraestructura , Músculo Esquelético , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patología , Unión Neuromuscular/patología , Unión Neuromuscular/ultraestructura , Sarcolema/patología , Sarcolema/ultraestructura , Utrofina/genética
2.
Neuromuscul Disord ; 27(7): 635-645, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28554556

RESUMEN

Enzyme-linked and electrochemiluminescence immunoassays were developed for quantification of amino (N-) terminal fragments of the skeletal muscle protein titin (N-ter titin) and qualified for use in detection of urinary N-ter titin excretion. Urine from normal subjects contained a small but measurable level of N-ter titin (1.0 ± 0.4 ng/ml). A 365-fold increase (365.4 ± 65.0, P = 0.0001) in urinary N-ter titin excretion was seen in Duchene muscular dystrophy (DMD) patients. Urinary N-ter titin was also evaluated in dystrophin deficient rodent models. Mdx mice exhibited low urinary N-ter titin levels at 2 weeks of age followed by a robust and sustained elevation starting at 3 weeks of age, coincident with the development of systemic skeletal muscle damage in this model; fold elevation could not be determined because urinary N-ter titin was not detected in age-matched wild type mice. Levels of serum creatine kinase and serum skeletal muscle troponin I (TnI) were also low at 2 weeks, elevated at later time points and were significantly correlated with urinary N-ter titin excretion in mdx mice. Corticosteroid treatment of mdx mice resulted in improved exercise performance and lowering of both urinary N-ter titin and serum skeletal muscle TnI concentrations. Low urinary N-ter titin levels were detected in wild type rats (3.0 ± 0.6 ng/ml), while Dmdmdx rats exhibited a 556-fold increase (1652.5 ± 405.7 ng/ml, P = 0.002) (both at 5 months of age). These results suggest that urinary N-ter titin is present at low basal concentrations in normal urine and increases dramatically coincident with muscle damage produced by dystrophin deficiency. Urinary N-ter titin has potential as a facile, non-invasive and translational biomarker for DMD.


Asunto(s)
Conectina/orina , Distrofia Muscular de Duchenne/orina , Adolescente , Corticoesteroides/uso terapéutico , Factores de Edad , Animales , Estudios de Casos y Controles , Niño , Preescolar , Conectina/sangre , Creatina Quinasa/sangre , Estudios Transversales , Humanos , Técnicas para Inmunoenzimas , Ratones , Ratones Endogámicos mdx , Distrofia Muscular Animal/sangre , Distrofia Muscular Animal/tratamiento farmacológico , Distrofia Muscular Animal/orina , Distrofia Muscular de Duchenne/sangre , Distrofia Muscular de Duchenne/genética
3.
Skelet Muscle ; 6: 34, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27757223

RESUMEN

BACKGROUND: The skeletal muscle stem cell niche provides an environment that maintains quiescent satellite cells, required for skeletal muscle homeostasis and regeneration. Syndecan-3, a transmembrane proteoglycan expressed in satellite cells, supports communication with the niche, providing cell interactions and signals to maintain quiescent satellite cells. RESULTS: Syndecan-3 ablation unexpectedly improves regeneration in repeatedly injured muscle and in dystrophic mice, accompanied by the persistence of sublaminar and interstitial, proliferating myoblasts. Additionally, muscle aging is improved in syndecan-3 null mice. Since syndecan-3 null myofiber-associated satellite cells downregulate Pax7 and migrate away from the niche more readily than wild type cells, syxndecan-3 appears to regulate satellite cell homeostasis and satellite cell homing to the niche. CONCLUSIONS: Manipulating syndecan-3 provides a promising target for development of therapies to enhance muscle regeneration in muscular dystrophies and in aged muscle.


Asunto(s)
Homeostasis , Músculo Esquelético/fisiología , Regeneración , Células Satélite del Músculo Esquelético/fisiología , Nicho de Células Madre , Sindecano-3/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Noqueados , Músculo Esquelético/lesiones , Músculo Esquelético/patología , Células Satélite del Músculo Esquelético/patología , Sindecano-3/genética
4.
Proc Natl Acad Sci U S A ; 112(2): 424-9, 2015 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-25548157

RESUMEN

Mammalian skeletal muscle is broadly characterized by the presence of two distinct categories of muscle fibers called type I "red" slow twitch and type II "white" fast twitch, which display marked differences in contraction strength, metabolic strategies, and susceptibility to fatigue. The relative representation of each fiber type can have major influences on susceptibility to obesity, diabetes, and muscular dystrophies. However, the molecular factors controlling fiber type specification remain incompletely defined. In this study, we describe the control of fiber type specification and susceptibility to metabolic disease by folliculin interacting protein-1 (Fnip1). Using Fnip1 null mice, we found that loss of Fnip1 increased the representation of type I fibers characterized by increased myoglobin, slow twitch markers [myosin heavy chain 7 (MyH7), succinate dehydrogenase, troponin I 1, troponin C1, troponin T1], capillary density, and mitochondria number. Cultured Fnip1-null muscle fibers had higher oxidative capacity, and isolated Fnip1-null skeletal muscles were more resistant to postcontraction fatigue relative to WT skeletal muscles. Biochemical analyses revealed increased activation of the metabolic sensor AMP kinase (AMPK), and increased expression of the AMPK-target and transcriptional coactivator PGC1α in Fnip1 null skeletal muscle. Genetic disruption of PGC1α rescued normal levels of type I fiber markers MyH7 and myoglobin in Fnip1-null mice. Remarkably, loss of Fnip1 profoundly mitigated muscle damage in a murine model of Duchenne muscular dystrophy. These results indicate that Fnip1 controls skeletal muscle fiber type specification and warrant further study to determine whether inhibition of Fnip1 has therapeutic potential in muscular dystrophy diseases.


Asunto(s)
Proteínas Portadoras/fisiología , Fibras Musculares de Contracción Rápida/patología , Fibras Musculares de Contracción Rápida/fisiología , Fibras Musculares de Contracción Lenta/patología , Fibras Musculares de Contracción Lenta/fisiología , Distrofia Muscular de Duchenne/patología , Distrofia Muscular de Duchenne/fisiopatología , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Proteínas Portadoras/genética , Modelos Animales de Enfermedad , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Endogámicos mdx , Ratones Noqueados , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/patología , Complejos Multiproteicos/metabolismo , Contracción Muscular/fisiología , Fatiga Muscular/fisiología , Distrofia Muscular de Duchenne/genética , Mioglobina/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Serina-Treonina Quinasas TOR/metabolismo , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Skelet Muscle ; 4: 10, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24910770

RESUMEN

BACKGROUND: Muscle hypertrophy in the mdx mouse model of Duchenne muscular dystrophy (DMD) can partially compensate for the loss of dystrophin by maintaining peak force production. Histopathology examination of the hypertrophic muscles suggests the hypertrophy primarily results from the addition of myofibers, and is accompanied by motor axon branching. However, it is unclear whether an increased number of innervated myofibers (myofiber hyperplasia) contribute to muscle hypertrophy in the mdx mice. METHODS: To better understand the cellular mechanisms of muscle hypertrophy in mdx mice, we directly compared the temporal progression of the dystrophic pathology in the extensor digitorum longus (EDL) muscle to myofiber number, myofiber branching, and innervation, from 3 to 20 weeks of age. RESULTS: We found that a 28% increase in the number of fibers in transverse sections of muscle correlated with a 31% increase in myofiber branching. Notably, the largest increases in myofiber number and myofiber branching occurred after 12 weeks of age when the proportion of myofibers with central nuclei had stabilized and the mdx mouse had reached maturity. The dystrophic pathology coincided with profound changes to innervation of the muscles that included temporary denervation of necrotic fibers, fragmentation of synapses, and ultra-terminal axon sprouting. However, there was little evidence of synapse formation in the mdx mice from 3 to 20 weeks of age. Only 4.4% of neuromuscular junctions extended ultra-terminal synapses, which failed to mature, and the total number of neuromuscular junctions remained constant. CONCLUSIONS: Muscle hypertrophy in mdx mice results from myofiber branching rather than myofiber hyperplasia.

6.
PLoS Genet ; 10(6): e1004431, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24922526

RESUMEN

Duchenne muscular dystrophy (DMD) is a severe muscle wasting disorder caused by mutations in the dystrophin gene. To examine the influence of muscle structure on the pathogenesis of DMD we generated mdx4cv:desmin double knockout (dko) mice. The dko male mice died of apparent cardiorespiratory failure at a median age of 76 days compared to 609 days for the desmin-/- mice. An ∼ 2.5 fold increase in utrophin expression in the dko skeletal muscles prevented necrosis in ∼ 91% of 1a, 2a and 2d/x fiber-types. In contrast, utrophin expression was reduced in the extrasynaptic sarcolemma of the dko fast 2b fibers leading to increased membrane fragility and dystrophic pathology. Despite lacking extrasynaptic utrophin, the dko fast 2b fibers were less dystrophic than the mdx4cv fast 2b fibers suggesting utrophin-independent mechanisms were also contributing to the reduced dystrophic pathology. We found no overt change in the regenerative capacity of muscle stem cells when comparing the wild-type, desmin-/-, mdx4cv and dko gastrocnemius muscles injured with notexin. Utrophin could form costameric striations with α-sarcomeric actin in the dko to maintain the integrity of the membrane, but the lack of restoration of the NODS (nNOS, α-dystrobrevin 1 and 2, α1-syntrophin) complex and desmin coincided with profound changes to the sarcomere alignment in the diaphragm, deposition of collagen between the myofibers, and impaired diaphragm function. We conclude that the dko mice may provide new insights into the structural mechanisms that influence endogenous utrophin expression that are pertinent for developing a therapy for DMD.


Asunto(s)
Desmina/genética , Distrofina/genética , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/genética , Utrofina/biosíntesis , Animales , Proteínas de Unión al Calcio/biosíntesis , Proteínas Asociadas a la Distrofina/biosíntesis , Venenos Elapídicos , Inflamación/inmunología , Macrófagos/inmunología , Masculino , Proteínas de la Membrana/biosíntesis , Ratones , Ratones Endogámicos mdx , Ratones Noqueados , Proteínas Musculares/biosíntesis , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/mortalidad , Distrofia Muscular de Duchenne/fisiopatología , Sarcolema/metabolismo , Sarcómeros/fisiología
7.
Proc Natl Acad Sci U S A ; 111(15): 5723-8, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-24706788

RESUMEN

Dystrophin and utrophin are highly similar proteins that both link cortical actin filaments with a complex of sarcolemmal glycoproteins, yet localize to different subcellular domains within normal muscle cells. In mdx mice and Duchenne muscular dystrophy patients, dystrophin is lacking and utrophin is consequently up-regulated and redistributed to locations normally occupied by dystrophin. Transgenic overexpression of utrophin has been shown to significantly improve aspects of the disease phenotype in the mdx mouse; therefore, utrophin up-regulation is under intense investigation as a potential therapy for Duchenne muscular dystrophy. Here we biochemically compared the previously documented microtubule binding activity of dystrophin with utrophin and analyzed several transgenic mouse models to identify phenotypes of the mdx mouse that remain despite transgenic utrophin overexpression. Our in vitro analyses revealed that dystrophin binds microtubules with high affinity and pauses microtubule polymerization, whereas utrophin has no activity in either assay. We also found that transgenic utrophin overexpression does not correct subsarcolemmal microtubule lattice disorganization, loss of torque production after in vivo eccentric contractions, or physical inactivity after mild exercise. Finally, our data suggest that exercise-induced inactivity correlates with loss of sarcolemmal neuronal NOS localization in mdx muscle, whereas loss of in vivo torque production after eccentric contraction-induced injury is associated with microtubule lattice disorganization.


Asunto(s)
Distrofina/deficiencia , Distrofina/metabolismo , Microtúbulos/metabolismo , Contracción Muscular/fisiología , Músculo Esquelético/fisiopatología , Utrofina/metabolismo , Animales , Fluorescencia , Ratones , Ratones Transgénicos , Torque
8.
Mol Ther ; 20(8): 1501-7, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22692496

RESUMEN

Duchenne muscular dystrophy (DMD) is a fatal, X-linked muscle disease caused by mutations in the dystrophin gene. Adeno-associated viral (AAV) vector-mediated gene replacement strategies hold promise as a treatment. Studies in animal models and human trials suggested that immune responses to AAV capsid proteins and transgene products prevented efficient gene therapy. In this study, we used widespread intramuscular (i.m.) injection to deliver AAV6-canine micro-dystrophin (c-µdys) throughout a group of skeletal muscles in dystrophic dogs given a brief course of commonly used immunosuppressants. Robust c-µdys expression was obtained for at least two years and was associated with molecular reconstitution of the dystrophin-glycoprotein complex (DGC) at the muscle membrane. Importantly, c-µdys expression was maintained for at least 18 months after discontinuing immunosuppression. The results obtained in a relevant preclinical model of DMD demonstrate feasibility of widespread AAV-mediated muscle transduction and transgene expression in the presence of transient immunosuppression to achieve molecular reconstitution that can be directly translated to human trials.


Asunto(s)
Distrofina/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/terapia , Animales , Western Blotting , Línea Celular , Perros , Distrofina/genética , Ensayo de Inmunoadsorción Enzimática , Humanos , Microscopía Electrónica , Microscopía Fluorescente , Distrofia Muscular de Duchenne/genética
9.
Prog Mol Biol Transl Sci ; 105: 83-111, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22137430

RESUMEN

The muscular dystrophies (MDs) represent a diverse collection of inherited human disorders, which affect to varying degrees skeletal, cardiac, and sometimes smooth muscle (Emery, 2002). To date, more than 50 different genes have been implicated as causing one or more types of MD (Bansal et al., 2003). In many cases, invaluable insights into disease mechanisms, structure and function of gene products, and approaches for therapeutic interventions have benefited from the study of animal models of the different MDs (Arnett et al., 2009). The large number of genes that are associated with MD and the tremendous number of animal models that have been developed preclude a complete discussion of each in the context of this review. However, we summarize here a number of the more commonly used models together with a mixture of different types of gene and MD, which serves to give a general overview of the value of animal models of MD for research and therapeutic development.


Asunto(s)
Modelos Animales de Enfermedad , Distrofias Musculares/patología , Animales , Calcio/metabolismo , Humanos , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Distrofias Musculares/metabolismo
10.
Hum Mol Genet ; 20(24): 4978-90, 2011 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-21949353

RESUMEN

Dp116 is a non-muscle isoform of dystrophin that assembles the dystrophin-glycoprotein complex (DGC), but lacks actin-binding domains. To examine the functional role of the DGC, we expressed the Dp116 transgene in mice lacking both dystrophin and utrophin (mdx:utrn(-/-)). Unexpectedly, expression of Dp116 prevented the most severe aspects of the mdx:utrn(-/-) phenotype. Dp116:mdx:utrn(-/-) transgenic mice had dramatic improvements in growth, mobility and lifespan compared with controls. This was associated with increased muscle mass and force generating capacity of limb muscles, although myofiber size and specific force were unchanged. Conversely, Dp116 had no effect on dystrophic injury as determined by muscle histopathology and serum creatine kinase levels. Dp116 also failed to restore normal fiber-type distribution or the post-synaptic architecture of the neuromuscular junction. These data demonstrate that the DGC is critical for growth and maintenance of muscle mass, a function that is independent of the ability to prevent dystrophic pathophysiology. Likewise, this is the first demonstration in skeletal muscle of a positive functional role for a dystrophin protein that lacks actin-binding domains. We conclude that both mechanical and non-mechanical functions of dystrophin are important for its role in skeletal muscle.


Asunto(s)
Distrofina/metabolismo , Longevidad , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Distrofia Muscular Animal/patología , Distrofia Muscular Animal/prevención & control , Animales , Fenómenos Biomecánicos , Creatina Quinasa/sangre , Distrofina/química , Esófago/patología , Femenino , Masculino , Ratones , Ratones Endogámicos mdx , Ratones Transgénicos , Contracción Muscular , Músculo Esquelético/ultraestructura , Distrofia Muscular Animal/sangre , Distrofia Muscular Animal/fisiopatología , Unión Neuromuscular/metabolismo , Unión Neuromuscular/patología , Unión Neuromuscular/ultraestructura , Tamaño de los Órganos , Isoformas de Proteínas/metabolismo , Análisis de Supervivencia , Utrofina/deficiencia , Utrofina/metabolismo
11.
Sci Transl Med ; 2(57): 57ra83, 2010 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-21068442

RESUMEN

Skeletal muscle is dynamic, adapting to environmental needs, continuously maintained, and capable of extensive regeneration. These hallmarks diminish with age, resulting in a loss of muscle mass, reduced regenerative capacity, and decreased functionality. Although the mechanisms responsible for this decline are unclear, complex changes within the local and systemic environment that lead to a reduction in regenerative capacity of skeletal muscle stem cells, termed satellite cells, are believed to be responsible. We demonstrate that engraftment of myofiber-associated satellite cells, coupled with an induced muscle injury, markedly alters the environment of young adult host muscle, eliciting a near-lifelong enhancement in muscle mass, stem cell number, and force generation. The abrogation of age-related atrophy appears to arise from an increased regenerative capacity of the donor stem cells, which expand to occupy both myonuclei in myofibers and the satellite cell niche. Further, these cells have extensive self-renewal capabilities, as demonstrated by serial transplantation. These near-lifelong, physiological changes suggest an approach for the amelioration of muscle atrophy and diminished function that arise with aging through myofiber-associated satellite cell transplantation.


Asunto(s)
Trasplante de Células , Senescencia Celular , Músculo Esquelético/citología , Animales , Proteínas Fluorescentes Verdes/genética , Ratones , Músculo Esquelético/fisiología , Regeneración , Ingeniería de Tejidos
12.
Muscle Nerve ; 42(2): 268-70, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20544945

RESUMEN

Currently available polymerase chain reaction (PCR) genotyping methods for point mutations in the mouse dystrophin gene can lead to false positives and result in wasted time and money due to breeding or treating the wrong mice. Here we describe a simple and accurate method for sequencing the point mutations in mdx, mdx(4cv), and mdx(5cv) mice. This method clearly distinguishes between wildtype, heterozygous, and mutant transcripts, and thereby time and money can be saved by avoiding false positives.


Asunto(s)
Distrofina/genética , Ratones Endogámicos mdx/genética , Distrofia Muscular Animal/genética , Reacción en Cadena de la Polimerasa/métodos , Animales , Reacciones Falso Positivas , Genotipo , Ratones
13.
PLoS Genet ; 6(5): e1000958, 2010 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-20502633

RESUMEN

Mutations in dystrophin can lead to Duchenne muscular dystrophy or the more mild form of the disease, Becker muscular dystrophy. The hinge 3 region in the rod domain of dystrophin is particularly prone to deletion mutations. In-frame deletions of hinge 3 are predicted to lead to BMD, however the severity of disease can vary considerably. Here we performed extensive structure-function analyses of truncated dystrophins with modified hinges and spectrin-like repeats in mdx mice. We found that the polyproline site in hinge 2 profoundly influences the functional capacity of a microdystrophin(DeltaR4-R23/DeltaCT) with a large deletion in the hinge 3 region. Inclusion of polyproline in microdystrophin(DeltaR4-R23/DeltaCT) led to small myofibers (12% smaller than wild-type), Achilles myotendinous disruption, ringed fibers, and aberrant neuromuscular junctions in the mdx gastrocnemius muscles. Replacing hinge 2 of microdystrophin(DeltaR4-R23/DeltaCT) with hinge 3 significantly improved the functional capacity to prevent muscle degeneration, increase muscle fiber area, and maintain the junctions. We conclude that the rigid alpha-helical structure of the polyproline site significantly impairs the functional capacity of truncated dystrophins to maintain appropriate connections between the cytoskeleton and extracellular matrix.


Asunto(s)
Distrofina/fisiología , Péptidos/fisiología , Animales , Distrofina/química , Distrofina/genética , Ratones , Ratones Endogámicos C57BL , Mutación , Péptidos/química
14.
J Child Neurol ; 25(9): 1149-57, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20498332

RESUMEN

The muscular dystrophies are a diverse group of genetic disorders without an effective treatment. Because they are caused by mutations in various genes, the most direct way to treat them involves correcting the underlying gene defect (ie, gene therapy). Such a gene therapy approach involves delivering a therapeutic gene cassette to essentially all the muscles of the body in a safe and efficacious manner. The authors describe gene delivery methods using vectors derived from adeno-associated virus that are showing great promise in preclinical studies for treatment of Duchenne muscular dystrophy. It is hoped that variations on these methods might be applicable for most, if not all, of the different types of muscular dystrophy.


Asunto(s)
Modelos Animales de Enfermedad , Terapia Genética/métodos , Terapia Genética/tendencias , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Animales , Terapia Genética/efectos adversos , Vectores Genéticos/genética , Vectores Genéticos/uso terapéutico , Humanos , Distrofia Muscular de Duchenne/diagnóstico
15.
Mol Cell Neurosci ; 40(4): 433-41, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19171194

RESUMEN

Duchenne muscular dystrophy (DMD) is characterized by muscle degeneration and structural defects in the neuromuscular synapse that are caused by mutations in dystrophin. Whether aberrant neuromuscular synapse structure is an indirect consequence of muscle degeneration or a direct result of loss of dystrophin function is not known. Rational design of truncated dystrophins has enabled the design of expression cassettes highly effective at preventing muscle degeneration in mouse models of DMD using gene therapy. Here we examined the functional capacity of a minidystrophin (minidysGFP) and a microdystrophin (microdystrophin(DeltaR4-R23)) transgene on the maturation and maintenance of neuromuscular junctions (NMJ) in mdx mice. We found that minidysGFP prevents fragmentation and the loss of postsynaptic folds at the NMJ. In contrast, microdystrophin (DeltaR4-R23) was unable to prevent synapse fragmentation in the limb muscles despite preventing muscle degeneration, although fragmentation was observed to temporally correlate with the formation of ringed fibers. Surprisingly, microdystrophin(DeltaR4-R23) increased the length of synaptic folds in the diaphragm muscles of mdx mice independent of muscle degeneration or the formation of ringed fibers. We also demonstrate that the number and depth of synaptic folds influences the density of voltage-gated sodium channels at the neuromuscular synapse in mdx, microdystrophin(DeltaR4-R23)/mdx and mdx:utrophin double knockout mice. Together, these data suggest that maintenance of the neuromuscular synapse is governed through its lateral association with the muscle cytoskeleton, and that dystrophin has a direct role in promoting the maturation of synaptic folds to allow more sodium channels into the junction.


Asunto(s)
Distrofina , Terapia Genética/métodos , Distrofia Muscular de Duchenne , Unión Neuromuscular/ultraestructura , Animales , Citoesqueleto/metabolismo , Distrofina/genética , Distrofina/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Ratones , Ratones Endogámicos mdx/anatomía & histología , Ratones Endogámicos mdx/genética , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/terapia , Unión Neuromuscular/metabolismo , Unión Neuromuscular/patología , Óxido Nítrico Sintasa de Tipo I/genética , Óxido Nítrico Sintasa de Tipo I/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Canales de Sodio/metabolismo , Sinapsis/metabolismo , Sinapsis/patología , Sinapsis/ultraestructura , Utrofina/genética , Utrofina/metabolismo
16.
Hum Mol Genet ; 17(24): 3975-86, 2008 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-18799475

RESUMEN

Myotendinous strain injury is the most common injury of human skeletal muscles because the majority of muscle forces are transmitted through this region. Although the immediate response to strain injury is well characterized, the chronic response to myotendinous strain injury is less clear. Here we examined the molecular and cellular adaptations to chronic myotendinous strain injury in mdx mice expressing a microdystrophin transgene (microdystrophin(DeltaR4-R23)). We found that muscles with myotendinous strain injury had an increased expression of utrophin and alpha7-integrin together with the dramatic restructuring of peripheral myofibrils into concentric rings. The sarcolemma of the microdystrophin(DeltaR4-R23)/mdx gastrocnemius muscles was highly protected from experimental lengthening contractions, better than wild-type muscles. We also found a positive correlation between myotendinous strain injury and ringed fibers in the HSA(LR) (human skeletal actin, long repeat) mouse model of myotonic dystrophy. We suggest that changes in protein expression and the formation of rings are adaptations to myotendinous strain injury that help to prevent muscle necrosis and retain the function of necessary muscles during injury, ageing and disease.


Asunto(s)
Tendón Calcáneo/patología , Distrofina/biosíntesis , Distrofina/genética , Eliminación de Gen , Músculo Esquelético/patología , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/patología , Esguinces y Distensiones/patología , Tendón Calcáneo/metabolismo , Tendón Calcáneo/ultraestructura , Envejecimiento/genética , Animales , Enfermedad Crónica , Modelos Animales de Enfermedad , Distrofina/fisiología , Predisposición Genética a la Enfermedad , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Ratones Transgénicos , Músculo Esquelético/metabolismo , Músculo Esquelético/ultraestructura , Distrofia Muscular Animal/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología , Necrosis/genética , Necrosis/prevención & control , Esguinces y Distensiones/genética , Esguinces y Distensiones/metabolismo
17.
Curr Top Dev Biol ; 84: 431-53, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19186250

RESUMEN

Duchenne muscular dystrophy (DMD) is the most common form of muscular dystrophy. There is no effective treatment and patients typically die in approximately the third decade. DMD is an X-linked recessive disease caused by mutations in the dystrophin gene. There are three mammalian models of DMD that have been used to understand better the pathogenesis of disease and develop therapeutic strategies. The mdx mouse is the most widely used model of DMD that displays some features of muscle degeneration, but the pathogenesis of disease is comparatively mild. The severity of disease in mice lacking both dystrophin and utrophin is similar to DMD, but one has to account for the discrete functions of utrophin. Canine X-linked muscular dystrophy (cxmd) is the best representation of DMD, but the phenotype of the most widely used golden retriever (GRMD) model is variable, making functional endpoints difficult to ascertain. Although each mammalian model has its limitations, together they have been essential for the development of several treatment strategies for DMD that target dystrophin replacement, disease progression, and muscle regeneration.


Asunto(s)
Modelos Animales de Enfermedad , Mamíferos , Distrofia Muscular de Duchenne/patología , Distrofia Muscular de Duchenne/terapia , Terapéutica/tendencias , Animales , Animales Modificados Genéticamente , Perros , Distrofina/genética , Humanos , Ratones , Ratones Endogámicos mdx , Contracción Muscular/fisiología , Músculo Esquelético/lesiones , Músculo Esquelético/patología , Distrofia Muscular de Duchenne/etiología , Regeneración/fisiología , Utrofina/genética
18.
Traffic ; 8(10): 1424-39, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17714427

RESUMEN

Muscular dystrophies are a diverse group of severe degenerative muscle diseases. Recent interest in the role of the Golgi complex (GC) in muscle disease has been piqued by findings that several dystrophies result from mutations in putative Golgi-resident glycosyltransferases. Given this new role of the Golgi in sarcolemmal stability, we hypothesized that abnormal Golgi distribution, regulation and/or function may constitute part of the pathology of other dystrophies, where the primary defect is independent of Golgi function. Thus, we investigated GC organization in the dystrophin-deficient muscles of mdx mice, a mouse model for Duchenne muscular dystrophy. We report aberrant organization of the synaptic and extrasynaptic GC in skeletal muscles of mdx mice. The GC is mislocalized and improperly concentrated at the surface and core of mdx myofibers. Golgi complex localization is disrupted after the onset of necrosis and normal redistribution is impaired during regeneration of mdx muscle fibers. Disruption of the microtubule cytoskeleton may account in part for aberrant GC localization in mdx myofibers. Golgi complex distribution is restored to wild type and microtubule cytoskeleton organization is significantly improved by recombinant adeno-associated virus 6-mediated expression of DeltaR4-R23/DeltaCT microdystrophin showing a novel mode of microdystrophin functionality. In summary, GC distribution abnormalities are a novel component of mdx skeletal muscle pathology rescued by microdystrophin expression.


Asunto(s)
Dependovirus , Distrofina/biosíntesis , Distrofina/genética , Vectores Genéticos , Aparato de Golgi/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/terapia , Animales , Distrofina/fisiología , Aparato de Golgi/genética , Aparato de Golgi/patología , Ratones , Ratones Endogámicos mdx , Músculo Esquelético/patología , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/patología , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología , Distrofia Muscular de Duchenne/terapia
19.
Hum Mol Genet ; 16(17): 2105-13, 2007 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-17588958

RESUMEN

Duchenne muscular dystrophy and Becker muscular dystrophy (BMD) are caused by mutations in the dystrophin gene. Although many in-frame deletions in the dystrophin gene lead to mild cases of BMD, truncations within the N-terminal actin-binding domain (ABD1) typically decrease dystrophin expression and lead to more severe cases of BMD. Because of the large reduction in protein expression, the functional capacity of dystrophin proteins deleted for subportions of ABD1 has been difficult to ascertain. ABD1 contains three actin-binding sequences designated ABS1-3. In the present study, we examined the pathophysiological effects of in-frame actin-binding sequence deletions in the context of a highly functional microdystrophin (DeltaR4-R23/DeltaCT). We delivered microdystrophins into the tibialis anterior muscles of 2-day-old dystrophin-deficient mdx mice using recombinant adeno-associated viral vectors. Muscles expressing microdystrophin with an intact ABD1 displayed normal morphology and specific force generation and were partially protected from contraction-induced injury when evaluated at 4 months of age. In contrast, muscles expressing microdystrophins lacking ABS2 and 3 or ABS3 alone developed significantly lower levels of specific force and were highly susceptible to contraction-induced injury. Microdystrophins with deletions within ABD1 were also less able to protect myofibers from degeneration than was a microdystrophin with the complete ABD1. We conclude that an intact ABD1 is required to support normal contractile properties of skeletal muscle and to protect against myofiber necrosis.


Asunto(s)
Actinas/metabolismo , Distrofina/genética , Distrofina/fisiología , Secuencia de Aminoácidos , Animales , Sitios de Unión/genética , Técnica del Anticuerpo Fluorescente , Ratones , Ratones Endogámicos C57BL , Modelos Genéticos , Datos de Secuencia Molecular , Músculo Esquelético/fisiología , Estructura Terciaria de Proteína/genética , Eliminación de Secuencia
20.
J Neurosci ; 25(5): 1249-59, 2005 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-15689563

RESUMEN

GABAergic and glycinergic synaptic transmission is proposed to promote the maturation and refinement of the developing CNS. Here we provide morphological and functional evidence that glycinergic and GABAergic synapses control motoneuron development in a region-specific manner during programmed cell death. In gephyrin-deficient mice that lack all postsynaptic glycine receptor and some GABA(A) receptor clusters, there was increased spontaneous respiratory motor activity, reduced respiratory motoneuron survival, and decreased innervation of the diaphragm. In contrast, limb-innervating motoneurons showed decreased spontaneous activity, increased survival, and increased innervation of their target muscles. Both GABA and glycine increased limb-innervating motoneuron activity and decreased respiratory motoneuron activity in wild-type mice, but only glycine responses were abolished in gephyrin-deficient mice. Our results provide genetic evidence that the development of glycinergic and GABAergic synaptic inputs onto motoneurons plays an important role in the survival, axonal branching, and spontaneous activity of motoneurons in developing mammalian embryos.


Asunto(s)
Proteínas Portadoras/fisiología , Glicina/fisiología , Proteínas de la Membrana/fisiología , Neuronas Motoras/fisiología , Músculo Esquelético/inervación , Transmisión Sináptica/fisiología , Ácido gamma-Aminobutírico/fisiología , Animales , Apoptosis , Axones/ultraestructura , Proteínas Portadoras/genética , Supervivencia Celular , Células Cultivadas/efectos de los fármacos , Diafragma/embriología , Diafragma/inervación , Diafragma/fisiopatología , Miembro Posterior/inervación , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas Motoras/citología , Músculo Esquelético/embriología , Músculo Esquelético/fisiopatología , Receptores de GABA-A/deficiencia , Receptores de GABA-A/fisiología , Respiración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...