Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant J ; 111(1): 149-163, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35451138

RESUMEN

In contrast to seed plants, the gametophytes of seed-free plants develop pluripotent meristems, which promote and sustain their independent growth and development. To date, the cellular basis of meristem development in gametophytes of seed-free ferns remains largely unknown. In this study, we used Woodsia obtusa, the blunt-lobe cliff fern, to quantitatively determine cell growth dynamics in two different types of apical meristems - the apical initial centered meristem and the multicellular apical meristem in gametophytes. Through confocal time-lapse live imaging and computational image analysis and quantification, we determined unique patterns of cell division and growth that sustain or terminate apical initials, dictate the transition from apical initials to multicellular apical meristems, and drive proliferation of apical meristems in ferns. Quantitative results showed that small cells correlated to active cell division in fern gametophytes. The marginal cells of multicellular apical meristems in fern gametophytes undergo division in both anticlinal and periclinal orientations, not only increasing cell numbers but also playing a dominant role in increasing cell layers during gametophyte development. All these findings provide insights into the function and regulation of meristems in gametophytes of seed-free vascular plants, suggesting both conserved and diversified mechanisms underlying meristem cell proliferation across land plants.


Asunto(s)
Helechos , Meristema , División Celular , Células Germinativas de las Plantas/metabolismo
2.
J Exp Bot ; 72(20): 6990-7001, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34181730

RESUMEN

The alternation of generations in land plants occurs between the sporophyte phase and the gametophyte phase. The sporophytes of seed plants develop self-maintained, multicellular meristems, and these meristems determine plant architecture. The gametophytes of seed plants lack meristems and are heterotrophic. In contrast, the gametophytes of seed-free vascular plants, including ferns, are autotrophic and free-living, developing meristems to sustain their independent growth and proliferation. Compared with meristems in the sporophytes of seed plants, the cellular mechanisms underlying meristem development in fern gametophytes remain largely unknown. Here, using confocal time-lapse live imaging and computational segmentation and quantification, we determined different patterns of cell divisions associated with the initiation and proliferation of two distinct types of meristems in gametophytes of two closely related Pteridaceae ferns, Pteris vittata and Ceratopteris richardii. Our results reveal how the simple timing of a switch between two meristems has considerable consequences for the divergent gametophyte morphologies of the two ferns. They further provide evolutionary insight into the function and regulation of gametophyte meristems in seed-free vascular plants.


Asunto(s)
Helechos , Pteridaceae , Evolución Biológica , Células Germinativas de las Plantas , Meristema
3.
Genome Biol Evol ; 13(3)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33681974

RESUMEN

As the closest extant sister group to seed plants, ferns are an important reference point to study the origin and evolution of plant genes and traits. One bottleneck to the use of ferns in phylogenetic and genetic studies is the fact that genome-level sequence information of this group is limited, due to the extreme genome sizes of most ferns. Ceratopteris richardii (hereafter Ceratopteris) has been widely used as a model system for ferns. In this study, we generated a transcriptome of Ceratopteris, through the de novo assembly of the RNA-seq data from 17 sequencing libraries that are derived from two sexual types of gametophytes and five different sporophyte tissues. The Ceratopteris transcriptome, together with 38 genomes and transcriptomes from other species across the Viridiplantae, were used to uncover the evolutionary dynamics of orthogroups (predicted gene families using OrthoFinder) within the euphyllophytes and identify proteins associated with the major shifts in plant morphology and physiology that occurred in the last common ancestors of euphyllophytes, ferns, and seed plants. Furthermore, this resource was used to identify and classify the GRAS domain transcriptional regulators of many developmental processes in plants. Through the phylogenetic analysis within each of the 15 GRAS orthogroups, we uncovered which GRAS family members are conserved or have diversified in ferns and seed plants. Taken together, the transcriptome database and analyses reported here provide an important platform for exploring the evolution of gene families in land plants and for studying gene function in seed-free vascular plants.


Asunto(s)
Embryophyta/genética , Embryophyta/metabolismo , Pteridaceae/genética , Pteridaceae/metabolismo , Transcriptoma , Evolución Molecular , Helechos/clasificación , Helechos/genética , Genes de Plantas , Células Germinativas de las Plantas , Filogenia , Dominios Proteicos , Pteridaceae/clasificación
4.
Plant J ; 106(2): 366-378, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33484592

RESUMEN

The shoot apical meristems (SAMs) of land plants are crucial for plant growth and organ formation. In several angiosperms, the HAIRY MERISTEM (HAM) genes function as key regulators that control meristem development and stem cell homeostasis. To date, the origin and evolutionary history of the HAM family in land plants remains unclear. Potentially shared and divergent functions of HAM family members from angiosperms and non-angiosperms are also not known. In constructing a comprehensive phylogeny of the HAM family, we show that HAM proteins are widely present in land plants and that HAM proteins originated prior to the divergence of bryophytes. The HAM family was duplicated in a common ancestor of angiosperms, leading to two distinct groups: type I and type II. Type-II HAM members are widely present in angiosperms, whereas type-I HAM members were independently lost in different orders of monocots. Furthermore, HAM members from angiosperms and non-angiosperms (including bryophytes, lycophytes, ferns and gymnosperms) are able to replace the role of the type-II HAM genes in Arabidopsis, maintaining established SAMs and promoting the initiation of new stem cell niches. Our results uncover the conserved functions of HAM family members and reveal the conserved regulatory mechanisms underlying HAM expression patterning in meristems, providing insight into the evolution of key stem cell regulators in land plants.


Asunto(s)
Secuencia Conservada/genética , Embryophyta/genética , Genes de Plantas/genética , Meristema/crecimiento & desarrollo , Briófitas/genética , Variaciones en el Número de Copia de ADN/genética , Embryophyta/crecimiento & desarrollo , Evolución Molecular , Genes de Plantas/fisiología , Meristema/genética , Filogenia
5.
J Exp Bot ; 71(12): 3701-3709, 2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32161961

RESUMEN

The perception pathway for endogenous auxin has been well described, yet the mode of action of synthetic auxin herbicides, used for >70 years, remains uncharacterized. We utilized transcriptomics and targeted physiological studies to investigate the unknown rapid response to synthetic auxin herbicides in the globally problematic weed species Erigeron canadensis. Synthetic auxin herbicide application consistently and rapidly down-regulated the photosynthetic machinery. At the same time, there was considerable perturbation to the expression of many genes related to phytohormone metabolism and perception. In particular, auxin herbicide application enhanced the expression of the key abscisic acid biosynthetic gene, 9-cis-epoxycarotenoid deoxygenase (NCED). The increase in NCED expression following auxin herbicide application led to a rapid biosynthesis of abscisic acid (ABA). This increase in ABA levels was independent of a loss of cell turgor or an increase in ethylene levels, both proposed triggers for rapid ABA biosynthesis. The levels of ABA in the leaf after auxin herbicide application continued to increase as plants approached death, up to >3-fold higher than in the leaves of plants that were drought stressed. We propose a new model in which synthetic auxin herbicides trigger plant death by the whole-scale, rapid, down-regulation of photosynthetic processes and an increase in ABA levels through up-regulation of NCED expression, independent of ethylene levels or a loss of cell turgor.


Asunto(s)
Erigeron , Herbicidas , Ácido Abscísico , Regulación de la Expresión Génica de las Plantas , Herbicidas/farmacología , Ácidos Indolacéticos , Transcriptoma
6.
Curr Biol ; 29(10): 1625-1633.e3, 2019 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-31080078

RESUMEN

Arsenic is a carcinogenic contaminant of water and food and a growing threat to human health in many regions of the world. This study focuses on the fern Pteris vittata (Pteridaceae), which is extraordinary in its ability to tolerate and hyperaccumulate very high levels of arsenic that would kill any other plant or animal outside the Pteridaceae. Here, we use RNA-seq to identify three genes (GLYCERALDEHYDE 3-PHOSPHATE DEHYDROGENASE (PvGAPC1), ORGANIC CATION TRANSPORTER 4 (PvOCT4), and GLUTATHIONE S-TRANSFERASE (PvGSTF1) that are highly upregulated by arsenic and are necessary for arsenic tolerance, as demonstrated by RNAi. The proteins encoded by these genes have unexpected properties: PvGAPC1 has an unusual active site and a much greater affinity for arsenate than phosphate; PvGSTF1 has arsenate reductase activity; and PvOCT4 localizes as puncta in the cytoplasm. Surprisingly, PvGAPC1, PvGSTF1, and arsenate localize in a similar pattern. These results are consistent with a model that describes the fate of arsenate once it enters the cell. It involves the conversion of arsenate into 1-arseno-3-phosphoglycerate by PvGAPC1. This "chemically trapped" arsenate is pumped into specific arsenic metabolizing vesicles by the PvOCT4 protein. Once inside these vesicles, 1-arseno-3-phosphoglycerate hydrolyses to release arsenate, which is then reduced by PvGSTF1 to arsenite, the form of arsenic stored in the vacuoles of this fern. This mechanism is strikingly similar to one recently described Pseudomonas aeruginosa, whose tolerance to arsenic also involves the biosynthesis and transport of 1-arseno-3-phosphoglycerate, indicating that P. vittata has evolved a simple, bacterial-like mechanism for arsenic tolerance.


Asunto(s)
Arsénico/metabolismo , Helechos/genética , Proteínas de Plantas/genética , Helechos/metabolismo , Proteínas de Plantas/metabolismo
7.
Nat Plants ; 4(7): 404-405, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29967516
8.
G3 (Bethesda) ; 8(7): 2205-2214, 2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29720393

RESUMEN

The fern Ceratopteris richardii is an important model for studies of sex determination and gamete differentiation in homosporous plants. Here we use RNA-seq to de novo assemble a transcriptome and identify genes differentially expressed in young gametophytes as their sex is determined by the presence or absence of the male-inducing pheromone called antheridiogen. Of the 1,163 consensus differentially expressed genes identified, the vast majority (1,030) are up-regulated in gametophytes treated with antheridiogen. GO term enrichment analyses of these DEGs reveals that a large number of genes involved in epigenetic reprogramming of the gametophyte genome are up-regulated by the pheromone. Additional hormone response and development genes are also up-regulated by the pheromone. This C. richardii gametophyte transcriptome and gene expression dataset will prove useful for studies focusing on sex determination and differentiation in plants.


Asunto(s)
Epigénesis Genética , Helechos/genética , Genes de Plantas , Células Germinativas de las Plantas , Procesos de Determinación del Sexo , Transcriptoma , Biología Computacional/métodos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Redes Reguladoras de Genes , Anotación de Secuencia Molecular
9.
New Phytol ; 217(1): 206-218, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28857170

RESUMEN

Arsenic (As) is an important environmental and food-chain toxin. We investigated the key components controlling As accumulation and tolerance in Arabidopsis thaliana. We tested the effects of different combinations of gene knockout, including arsenate reductase (HAC1), γ-glutamyl-cysteine synthetase (γ-ECS), phytochelatin synthase (PCS1) and phosphate effluxer (PHO1), and the heterologous expression of the As-hyperaccumulator Pteris vittata arsenite efflux (PvACR3), on As tolerance, accumulation, translocation and speciation in A. thaliana. Heterologous expression of PvACR3 markedly increased As tolerance and root-to-shoot As translocation in A. thaliana, with PvACR3 being localized to the plasma membrane. Combining PvACR3 expression with HAC1 mutation led to As hyperaccumulation in the shoots, whereas combining HAC1 and PHO1 mutation decreased As accumulation. Mutants of γ-ECS and PCS1 were hypersensitive to As and had higher root-to-shoot As translocation. Combining γ-ECS or PCS1 with HAC1 mutation did not alter As tolerance or accumulation beyond the levels observed in the single mutants. PvACR3 and HAC1 have large effects on root-to-shoot As translocation. Arsenic hyperaccumulation can be engineered in A. thaliana by knocking out the HAC1 gene and expressing PvACR3. PvACR3 and HAC1 also affect As tolerance, but not to the extent of γ-ECS and PCS1.


Asunto(s)
Arabidopsis/genética , Arsénico/metabolismo , Proteínas de Plantas/metabolismo , Pteris/genética , Aminoaciltransferasas/genética , Aminoaciltransferasas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arseniato Reductasas/genética , Arseniato Reductasas/metabolismo , Transporte Biológico , Técnicas de Inactivación de Genes , Mutación , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/metabolismo
10.
Plant Signal Behav ; 12(9): e1365210, 2017 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-28841357

RESUMEN

Homologs of the Arabidopsis core abscisic acid (ABA) signaling component OPEN STOMATA1 (OST1) are best known for their role in closing stomata in angiosperm species. We recently characterized a fern OST1 homolog, GAMETOPHYTES ABA INSENSITIVE ON ANTHERDIOGEN 1 (GAIA1), which is not required for stomatal closure in ferns, consistent with physiologic evidence that shows the stomata of these plants respond passively to changes in leaf water status. Instead, gaia1 mutants reveal a critical role in ABA signaling for spore dormancy and sex determination, in a system regulated by antagonism between ABA and the gibberellin (GA)-derived fern hormone antheridiogen (ACE). ABA and key proteins, including ABA receptors from the PYR/PYL/RCAR family and negative regulators of ABA-signaling from Group A of the type-2C protein phosphatases (PP2Cs), in addition to OST1 homologs, can be found in all terrestrial land plant lineages, ranging from liverworts that lack stomata, to angiosperms. As land plants have evolved and diversified over the past 450 million years, so too have the roles of this important plant hormone and the genes involved in its signaling and perception.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Giberelinas/metabolismo , Proteínas Quinasas/metabolismo
11.
Proc Natl Acad Sci U S A ; 113(45): 12862-12867, 2016 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-27791082

RESUMEN

Sexual reproduction in animals and plants shares common elements, including sperm and egg production, but unlike animals, little is known about the regulatory pathways that determine the sex of plants. Here we use mutants and gene silencing in a fern species to identify a core regulatory mechanism in plant sexual differentiation. A key player in fern sex differentiation is the phytohormone abscisic acid (ABA), which regulates the sex ratio of male to hermaphrodite tissues during the reproductive cycle. Our analysis shows that in the fern Ceratopteris richardii, a gene homologous to core ABA transduction genes in flowering plants [SNF1-related kinase2s (SnRK2s)] is primarily responsible for the hormonal control of sex determination. Furthermore, we provide evidence that this ABA-SnRK2 signaling pathway has transitioned from determining the sex of ferns to controlling seed dormancy in the earliest seed plants before being co-opted to control transpiration and CO2 exchange in derived seed plants. By tracing the evolutionary history of this ABA signaling pathway from plant reproduction through to its role in the global regulation of plant-atmosphere gas exchange during the last 450 million years, we highlight the extraordinary effect of the ABA-SnRK2 signaling pathway in plant evolution and vegetation function.

12.
Genome Biol Evol ; 7(9): 2533-44, 2015 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-26311176

RESUMEN

Ferns are one of the few remaining major clades of land plants for which a complete genome sequence is lacking. Knowledge of genome space in ferns will enable broad-scale comparative analyses of land plant genes and genomes, provide insights into genome evolution across green plants, and shed light on genetic and genomic features that characterize ferns, such as their high chromosome numbers and large genome sizes. As part of an initial exploration into fern genome space, we used a whole genome shotgun sequencing approach to obtain low-density coverage (∼0.4X to 2X) for six fern species from the Polypodiales (Ceratopteris, Pteridium, Polypodium, Cystopteris), Cyatheales (Plagiogyria), and Gleicheniales (Dipteris). We explore these data to characterize the proportion of the nuclear genome represented by repetitive sequences (including DNA transposons, retrotransposons, ribosomal DNA, and simple repeats) and protein-coding genes, and to extract chloroplast and mitochondrial genome sequences. Such initial sweeps of fern genomes can provide information useful for selecting a promising candidate fern species for whole genome sequencing. We also describe variation of genomic traits across our sample and highlight some differences and similarities in repeat structure between ferns and seed plants.


Asunto(s)
Helechos/genética , Genoma de Planta , ADN de Plantas/química , Tamaño del Genoma , Genoma del Cloroplasto , Genoma Mitocondrial , Genómica , Proteínas de Plantas/genética , Secuencias Repetitivas de Ácidos Nucleicos
14.
Front Plant Sci ; 6: 100, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25798139

RESUMEN

The fern life cycle includes a haploid gametophyte that is independent of the sporophyte and functions to produce the gametes. In homosporous ferns, the sex of the gametophyte is not fixed but can vary depending on its social environment. In many species, the sexual phenotype of the gametophyte is determined by the pheromone antheridiogen. Antheridiogen induces male development and is secreted by hermaphrodites once they become insensitive to its male-inducing effect. Recent genetic and biochemical studies of the antheridiogen response and sex-determination pathway in ferns, which are highlighted here, reveal many similarities and interesting differences to GA signaling and biosynthetic pathways in angiosperms.

15.
Gigascience ; 3: 15, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25324969

RESUMEN

Ferns are the only major lineage of vascular plants not represented by a sequenced nuclear genome. This lack of genome sequence information significantly impedes our ability to understand and reconstruct genome evolution not only in ferns, but across all land plants. Azolla and Ceratopteris are ideal and complementary candidates to be the first ferns to have their nuclear genomes sequenced. They differ dramatically in genome size, life history, and habit, and thus represent the immense diversity of extant ferns. Together, this pair of genomes will facilitate myriad large-scale comparative analyses across ferns and all land plants. Here we review the unique biological characteristics of ferns and describe a number of outstanding questions in plant biology that will benefit from the addition of ferns to the set of taxa with sequenced nuclear genomes. We explain why the fern clade is pivotal for understanding genome evolution across land plants, and we provide a rationale for how knowledge of fern genomes will enable progress in research beyond the ferns themselves.

17.
PLoS One ; 7(5): e35846, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22567114

RESUMEN

Spike mosses are among the most basal vascular plants, and one species, Selaginella moellendorffii, was recently selected for full genome sequencing by the Joint Genome Institute (JGI). Glycosyltransferases (GTs) are involved in many aspects of a plant life, including cell wall biosynthesis, protein glycosylation, primary and secondary metabolism. Here, we present a comparative study of the S. moellendorffii genome across 92 GT families and an additional family (DUF266) likely to include GTs. The study encompasses the moss Physcomitrella patens, a non-vascular land plant, while rice and Arabidopsis represent commelinid and non-commelinid seed plants. Analysis of the subset of GT-families particularly relevant to cell wall polysaccharide biosynthesis was complemented by a detailed analysis of S. moellendorffii cell walls. The S. moellendorffii cell wall contains many of the same components as seed plant cell walls, but appears to differ somewhat in its detailed architecture. The S. moellendorffii genome encodes fewer GTs (287 GTs including DUF266s) than the reference genomes. In a few families, notably GT51 and GT78, S. moellendorffii GTs have no higher plant orthologs, but in most families S. moellendorffii GTs have clear orthologies with Arabidopsis and rice. A gene naming convention of GTs is proposed which takes orthologies and GT-family membership into account. The evolutionary significance of apparently modern and ancient traits in S. moellendorffii is discussed, as is its use as a reference organism for functional annotation of GTs.


Asunto(s)
Glicosiltransferasas/metabolismo , Selaginellaceae/enzimología , Pared Celular/metabolismo , Epítopos/inmunología , Inmunohistoquímica , Polisacáridos/metabolismo , Selaginellaceae/anatomía & histología , Selaginellaceae/inmunología , Selaginellaceae/metabolismo
18.
Science ; 332(6032): 960-3, 2011 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-21551031

RESUMEN

Vascular plants appeared ~410 million years ago, then diverged into several lineages of which only two survive: the euphyllophytes (ferns and seed plants) and the lycophytes. We report here the genome sequence of the lycophyte Selaginella moellendorffii (Selaginella), the first nonseed vascular plant genome reported. By comparing gene content in evolutionarily diverse taxa, we found that the transition from a gametophyte- to a sporophyte-dominated life cycle required far fewer new genes than the transition from a nonseed vascular to a flowering plant, whereas secondary metabolic genes expanded extensively and in parallel in the lycophyte and angiosperm lineages. Selaginella differs in posttranscriptional gene regulation, including small RNA regulation of repetitive elements, an absence of the trans-acting small interfering RNA pathway, and extensive RNA editing of organellar genes.


Asunto(s)
Evolución Biológica , Genoma de Planta , Selaginellaceae/genética , Bryopsida/genética , Chlamydomonas/química , Chlamydomonas/genética , Elementos Transponibles de ADN , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Magnoliopsida/química , Magnoliopsida/genética , MicroARNs/genética , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteoma/análisis , Edición de ARN , ARN de Planta/genética , Secuencias Repetitivas de Ácidos Nucleicos , Selaginellaceae/crecimiento & desarrollo , Selaginellaceae/metabolismo , Análisis de Secuencia de ADN
19.
Plant Cell ; 22(6): 2045-57, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20530755

RESUMEN

The fern Pteris vittata tolerates and hyperaccumulates exceptionally high levels of the toxic metalloid arsenic, and this trait appears unique to the Pteridaceae. Once taken up by the root, arsenate is reduced to arsenite as it is transported to the lamina of the frond, where it is stored in cells as free arsenite. Here, we describe the isolation and characterization of two P. vittata genes, ACR3 and ACR3;1, which encode proteins similar to the ACR3 arsenite effluxer of yeast. Pv ACR3 is able to rescue the arsenic-sensitive phenotypes of yeast deficient for ACR3. ACR3 transcripts are upregulated by arsenic in sporophyte roots and gametophytes, tissues that directly contact soil, whereas ACR3;1 expression is unaffected by arsenic. Knocking down the expression of ACR3, but not ACR3;1, in the gametophyte results in an arsenite-sensitive phenotype, indicating that ACR3 plays a necessary role in arsenic tolerance in the gametophyte. We show that ACR3 localizes to the vacuolar membrane in gametophytes, indicating that it likely effluxes arsenite into the vacuole for sequestration. Whereas single-copy ACR3 genes are present in moss, lycophytes, other ferns, and gymnosperms, none are present in angiosperms. The duplication of ACR3 in P. vittata and the loss of ACR3 in angiosperms may explain arsenic tolerance in this unusual group of ferns while precluding the same trait in angiosperms.


Asunto(s)
Arsenitos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Pteris/genética , Vacuolas/metabolismo , Secuencia de Aminoácidos , Transporte Biológico , Clonación Molecular , Duplicación de Gen , Técnicas de Silenciamiento del Gen , Genes de Plantas , Células Germinativas de las Plantas/efectos de los fármacos , Células Germinativas de las Plantas/metabolismo , Proteínas de Transporte de Membrana/genética , Datos de Secuencia Molecular , Filogenia , Proteínas de Plantas/genética , Pteris/efectos de los fármacos , Pteris/metabolismo , ARN de Planta/genética , Alineación de Secuencia
20.
Annu Rev Plant Biol ; 60: 223-38, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19575581

RESUMEN

Selaginella (spikemoss) is an enigma in the plant kingdom. Although a fascination to botanists at the turn of the twentieth century, members of this genus are unremarkable in appearance, never flower, and are of no agronomic value. However, members of this genus are relicts from ancient times, and one has to marvel at how this genus has survived virtually unchanged in appearance for hundreds of millions of years. In light of the recent completion of the Selaginella moellendorffii genome sequence, this review is intended to survey what is known about Selaginella, with a special emphasis on recent inquiries into its unique biology and importance in understanding the early evolution of vascular plants.


Asunto(s)
Selaginellaceae , Evolución Biológica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...