Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Metabolites ; 13(9)2023 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-37755281

RESUMEN

Follicular fluid (FF) ensures a safe environment for oocyte growth and maturation inside the ovarian follicle in mammals. In each cycle, the large dominant follicle (LF) contains the oocyte designated to be ovulated, whereas the small subordinate follicles (SFs) of the same wave will die through atresia. In cows, the oocytes from the SF, being 2 mm in size, are suitable for in vitro reproduction biotechnologies, and their competence in developing an embryo depends on the size of the follicles. FF contains proteins, metabolites, fatty acids, and a multitude of extracellular vesicles (ffEVs) of different origins, which may influence oocyte competence through bidirectional exchanges of specific molecular cargo between follicular cells and enclosed oocytes. FF composition evolves along with follicle growth, and the abundance of different lipids varies between the LF and SF. Here, significant differences in FF lipid content between the LFs and SFs within the same ovary were demonstrated by MALD-TOF mass spectrometry imaging on bovine ovarian sections. We then aimed to enlighten the lipid composition of FF, and MALDI-TOF lipid profiling was performed on cellular, vesicular, and liquid fractions of FF. Differential analyses on the abundance of detected lipid features revealed specific enrichment of phospholipids in different ffEV types, such as microvesicles (MVs) and exosomes (Exo), compared to depleted FF. MALDI-TOF lipid profiling on MVs and Exo from the LF and SF samples (n = 24) revealed that more than 40% of detected features were differentially abundant between the groups of MVs and Exo from the different follicles (p < 0.01, fold change > 2). Glycerophospholipid and sphingolipid features were more abundant in ffEVs from the SFs, whereas different lysophospholipids, including phosphatidylinositols, were more abundant in the LFs. As determined by functional analysis, the specific lipid composition of ffEVs suggested the involvement of vesicular lipids in cell signaling pathways and largely contributed to the differentiation of the dominant and subordinate follicles.

2.
Cells ; 12(9)2023 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-37174735

RESUMEN

Centrosome formation during early development in mice and rats occurs due to the appearance of centrioles de novo. In contrast, in humans and other non-rodent mammals, centrioles are thought to be derived from spermatozoa. Ultrastructural study of zygotes and early embryos of cattle at full series of ultrathin sections show that the proximal centriole of the spermatozoon disappears by the end of the first cleavage division. Centrioles appear in two to four cell embryos in fertilized oocytes and in parthenogenetic embryos. Centriole formation includes the appearance of atypical centrioles with randomly arranged triplets and centrioles with microtubule triplets of various lengths. After the third cleavage, four centriolar cylinders appear for the first time in the blastomeres while each embryo still has two atypical centrioles. Our results showed that the mechanisms of centriole formation in different groups of mammals are universal, differing only in the stage of development in which they occur.


Asunto(s)
Centrosoma , Oocitos , Humanos , Masculino , Bovinos , Animales , Ratones , Ratas , Oocitos/ultraestructura , Centrosoma/ultraestructura , Centriolos/ultraestructura , Espermatozoides/ultraestructura , Mamíferos
3.
BMC Genomics ; 23(1): 839, 2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36536309

RESUMEN

BACKGROUND: Despite many improvements with in vitro culture systems, the quality and developmental ability of mammalian embryos produced in vitro are still lower than their in vivo counterparts. Though previous studies have evidenced differences in gene expression between in vivo- and in vitro-derived bovine embryos, there is no comparison at the protein expression level. RESULTS: A total of 38 pools of grade-1 quality bovine embryos at the 4-6 cell, 8-12 cell, morula, compact morula, and blastocyst stages developed either in vivo or in vitro were analyzed by nano-liquid chromatography coupled with label-free quantitative mass spectrometry, allowing for the identification of 3,028 proteins. Multivariate analysis of quantified proteins showed a clear separation of embryo pools according to their in vivo or in vitro origin at all stages. Three clusters of differentially abundant proteins (DAPs) were evidenced according to embryo origin, including 463 proteins more abundant in vivo than in vitro across development and 314 and 222 proteins more abundant in vitro than in vivo before and after the morula stage, respectively. The functional analysis of proteins found more abundant in vivo showed an enrichment in carbohydrate metabolism and cytoplasmic cellular components. Proteins found more abundant in vitro before the morula stage were mostly localized in mitochondrial matrix and involved in ATP-dependent activity, while those overabundant after the morula stage were mostly localized in the ribonucleoprotein complex and involved in protein synthesis. Oviductin and other oviductal proteins, previously shown to interact with early embryos, were among the most overabundant proteins after in vivo development. CONCLUSIONS: The maternal environment led to higher degradation of mitochondrial proteins at early developmental stages, lower abundance of proteins involved in protein synthesis at the time of embryonic genome activation, and a global upregulation of carbohydrate metabolic pathways compared to in vitro production. Furthermore, embryos developed in vivo internalized large amounts of oviductin and other proteins probably originated in the oviduct as soon as the 4-6 cell stage. These data provide new insight into the molecular contribution of the mother to the developmental ability of early embryos and will help design better in vitro culture systems.


Asunto(s)
Embrión de Mamíferos , Proteómica , Bovinos , Animales , Embrión de Mamíferos/metabolismo , Blastocisto , Proteínas/metabolismo , Mórula/metabolismo , Desarrollo Embrionario , Mamíferos
4.
Front Cell Dev Biol ; 10: 863700, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35386205

RESUMEN

Early embryo development is a dynamic process involving important molecular and structural changes leading to the embryonic genome activation (EGA) and early cell lineage differentiation. Our aim was to elucidate proteomic changes in bovine embryos developed in vivo. Eleven females were used as embryo donors and pools of embryos at the 4-6 cell, 8-12 cell, morula, compact morula and blastocyst stages were analyzed by nanoliquid chromatography coupled with label free quantitative mass spectrometry. A total of 2,757 proteins were identified, of which 1,950 were quantitatively analyzed. Principal component analysis of data showed a clear separation of embryo pools according to their developmental stage. The hierarchical clustering of differentially abundant proteins evidenced a first cluster of 626 proteins that increased in abundance during development and a second cluster of 400 proteins that decreased in abundance during development, with most significant changes at the time of EGA and blastocyst formation. The main pathways and processes overrepresented among upregulated proteins were RNA metabolism, protein translation and ribosome biogenesis, whereas Golgi vesicle transport and protein processing in endoplasmic reticulum were overrepresented among downregulated proteins. The pairwise comparison between stages allowed us to identify specific protein interaction networks and metabolic pathways at the time of EGA, morula compaction and blastocyst formation. This is the first comprehensive study of proteome dynamics in non-rodent mammalian embryos developed in vivo. These data provide a number of protein candidates that will be useful for further mechanistic and functional studies.

5.
Reprod Biol ; 21(4): 100545, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34419706

RESUMEN

In order to identify oviduct fluid (OF) peptides and proteins possibly uptaken by developing embryos, in-vitro produced bovine embryos exposed or not to OF were individually analyzed by MALDI-TOF mass spectrometry. Overall, 11 masses were overabundant in OF-treated embryos compared to controls, among which one at 8.9 kDa annotated as immediate early response 3-interacting protein 1 or a peptide of transitional endoplasmic reticulum ATPase met the criteria of an OF embryo-interacting protein or peptide.


Asunto(s)
Embrión de Mamíferos/metabolismo , Fertilización In Vitro , Oviductos/metabolismo , Proteínas/metabolismo , Proteoma , Animales , Bovinos , Femenino , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
6.
Int J Mol Sci ; 21(15)2020 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-32727074

RESUMEN

Oviduct fluid extracellular vesicles (oEVs) have been proposed as bringing key molecules to the early developing embryo. In order to evaluate the changes induced by oEVs on embryo phospholipids, fresh bovine blastocysts developed in vitro in the presence or absence of oEVs were analyzed by intact cell MALDI-TOF (Matrix assisted laser desorption ionization-Time of flight) mass spectrometry (ICM-MS). The development rates, cryotolerance, and total cell number of blastocysts were also evaluated. The exposure to oEVs did not affect blastocyst yield or cryotolerance but modified the phospholipid content of blastocysts with specific changes before and after blastocoel expansion. The annotation of differential peaks due to oEV exposure evidenced a shift of embryo phospholipids toward more abundant phosphatidylcholines (PC), phosphatidylethanolamines (PE), and sphingomyelins (SM) with long-chain fatty acids. The lipidomic profiling of oEVs showed that 100% and 33% of the overabundant masses in blastocysts and expanded blastocysts, respectively, were also present in oEVs. In conclusion, this study provides the first analysis of the embryo lipidome regulated by oEVs. Exposure to oEVs induced significant changes in the phospholipid composition of resulting embryos, probably mediated by the incorporation of oEV-phospholipids into embryo membranes and by the modulation of the embryonic lipid metabolism by oEV molecular cargos.


Asunto(s)
Blastocisto/metabolismo , Desarrollo Embrionario , Trompas Uterinas/metabolismo , Fosfolípidos/metabolismo , Animales , Bovinos , Femenino
7.
Int J Mol Sci ; 21(2)2020 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-31940782

RESUMEN

The bovine embryo develops in contact with the oviductal fluid (OF) during the first 4-5 days of pregnancy. The aim of this study was to decipher the protein interactions occurring between the developing embryo and surrounding OF. In-vitro produced 4-6 cell and morula embryos were incubated or not (controls) in post-ovulatory OF (OF-treated embryos) and proteins were then analyzed and quantified by high resolution mass spectrometry (MS) in both embryo groups and in OF. A comparative analysis of MS data allowed the identification and quantification of 56 embryo-interacting proteins originated from the OF, including oviductin (OVGP1) and several annexins (ANXA1, ANXA2, ANXA4) as the most abundant ones. Some embryo-interacting proteins were developmental stage-specific, showing a modulating role of the embryo in protein interactions. Three interacting proteins (OVGP1, ANXA1 and PYGL) were immunolocalized in the perivitelline space and in blastomeres, showing that OF proteins were able to cross the zona pellucida and be taken up by the embryo. Interacting proteins were involved in a wide range of functions, among which metabolism and cellular processes were predominant. This study identified for the first time a high number of oviductal embryo-interacting proteins, paving the way for further targeted studies of proteins potentially involved in the establishment of pregnancy in cattle.


Asunto(s)
Blastómeros/metabolismo , Mórula/metabolismo , Oviductos/metabolismo , Proteoma/metabolismo , Animales , Anexinas/genética , Anexinas/metabolismo , Bovinos , Femenino , Proteoma/genética , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Membrana Vitelina/metabolismo
8.
Theriogenology ; 135: 65-72, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31203089

RESUMEN

Sperm capacitation, fertilization and embryo development take place in the oviduct during the periovulatory period of the estrous cycle. Phospholipids are crucial metabolites for sperm capacitation and early embryo development. The aim of this study was to monitor the abundance of phospholipids in the bovine oviductal fluid (OF) according to the stage of the estrous cycle and the side relative to ovulation. Pairs of bovine oviducts were collected in a slaughterhouse and classified into four stages of the estrous cycle: post-ovulatory (Post-ov), mid-luteal (Mid-lut), late-luteal (Late-lut) and pre-ovulatory (Pre-ov) phases (n = 17 cows/stage). Cell-free OF from oviducts ipsilateral and contralateral to the site of ovulation were analyzed using MALDI-TOF mass spectrometry. Lipid identification was achieved by high resolution mass spectrometry. A total of 274 lipid masses were detected in the mass range of 400-1000 Da, corresponding mostly to phosphatidylcholines (PC), lysoPC, phosphatidylethanolamine (PE), lysoPE and sphingomyelins (SM). Ipsilateral and contralateral OF did not differ in their lipid profiles at any stage of the cycle. However, 127 and 96 masses were differentially abundant between stages in ipsilateral and contralateral OF, respectively. Highest differences in lipid profiles were observed in the Pre-ov vs. Mid-lut and Pre-ov vs. Late-lut comparisons in both sides relative to ovulation. Differential abundance of specific molecules of PC, PE, SM and l-carnitine were observed at Pre-ov and Post-ov compared with the luteal phase. This work proposes new candidates potentially able to regulate sperm capacitation and early embryo development.


Asunto(s)
Bovinos/fisiología , Ciclo Estral/fisiología , Trompas Uterinas/metabolismo , Fosfolípidos/metabolismo , Animales , Femenino , Regulación de la Expresión Génica , Lípidos/biosíntesis , Fosfolípidos/clasificación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
9.
Mol Reprod Dev ; 86(6): 661-672, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30950150

RESUMEN

The objective of this study was to evaluate the effect of progesterone (P4), estradiol (E2), and cortisol (CO) at intraoviductal concentrations on bovine embryo development and quality in vitro. After fertilization of in vitro matured oocytes, zygotes were cultured for 8 days in synthetic oviductal fluid, supplemented with 55 ng/ml P4, 120 pg/ml E2, 40 ng/ml CO, or their combination (ALL). Control embryos were cultured with vehicle (0.1% ethanol). Exposure to steroids did not affect the embryo developmental rate nor the mean number of cells per blastocyst. However, at 24 hr after vitrification-warming, exposure to P4 improved the proportion of embryos that re-expanded and were viable while exposure to CO decreased the proportion of viable embryos. By intact cell MALDI-TOF mass spectrometry, a total of 242 phospholipid masses of 400-1000 m/z were detected from individual fresh blastocysts. Exposure to ALL induced the highest and most specific changes in embryo phospholipids, followed by P4, E2, and CO. In particular, the m/z 546.3 and 546.4 attributed to lysophosphatidylcholines were found less abundant after exposure to P4. In conclusion, exposure of bovine embryos to intraoviductal concentrations of steroid hormones did not affect in vitro development but changed blastocyst quality in terms of cryotolerance and phospholipid profiles.


Asunto(s)
Blastocisto/metabolismo , Criopreservación , Desarrollo Embrionario , Hormonas Esteroides Gonadales/metabolismo , Oviductos/metabolismo , Animales , Bovinos , Técnicas de Cultivo de Embriones , Femenino , Fertilización In Vitro , Técnicas de Maduración In Vitro de los Oocitos , Técnicas de Cultivo de Órganos
10.
Int J Mol Sci ; 21(1)2019 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-31905654

RESUMEN

The oviductal fluid is the first environment experienced by mammalian embryos at the very beginning of life. However, it has long been believed that the oviductal environment was not essential for proper embryonic development. Successful establishment of in vitro embryo production techniques (which completely bypass the oviduct) have reinforced this idea. Yet, it became evident that in vitro produced embryos differ markedly from their in vivo counterparts, and these differences are associated with lower pregnancy outcomes and more health issues after birth. Nowadays, researchers consider the oviduct as the most suitable microenvironment for early embryonic development and a substantial effort is made to understand its dynamic, species-specific functions. In this review, we touch on the origin and molecular components of the oviductal fluid in mammals, where recent progress has been made thanks to the wider use of mass spectrometry techniques. Some of the factors and processes known to regulate oviductal secretions, including the embryo itself, as well as ovulation, insemination, endogenous and exogenous hormones, and metabolic and heat stress, are summarized. Special emphasis is laid on farm animals because, owing to the availability of sample material and the economic importance of fertility in livestock husbandry, a large part of the work on this topic has been carried out in domestic animals used for dairy and/or meat production.


Asunto(s)
Trompas Uterinas/metabolismo , Líquido Folicular/metabolismo , Embarazo/metabolismo , Animales , Desarrollo Embrionario , Trompas Uterinas/fisiología , Femenino , Hormonas/metabolismo , Humanos , Embarazo/fisiología
11.
Int J Mol Sci ; 19(10)2018 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-30347829

RESUMEN

Ovarian follicle provides a favorable environment for enclosed oocytes, which acquire their competence in supporting embryo development in tight communications with somatic follicular cells and follicular fluid (FF). Although steroidogenesis in theca (TH) and granulosa cells (GC) is largely studied, and the molecular mechanisms of fatty acid (FA) metabolism in cumulus cells (CC) and oocytes are emerging, little data is available regarding lipid metabolism regulation within ovarian follicles. In this study, we investigated lipid composition and the transcriptional regulation of FA metabolism in 3⁻8 mm ovarian follicles in bovine. Using liquid chromatography and mass spectrometry (MS), 438 and 439 lipids were identified in FF and follicular cells, respectively. From the MALDI-TOF MS lipid fingerprints of FF, TH, GC, CC, and oocytes, and the MS imaging of ovarian sections, we identified 197 peaks and determined more abundant lipids in each compartment. Transcriptomics revealed lipid metabolism-related genes, which were expressed constitutively or more specifically in TH, GC, CC, or oocytes. Coupled with differential lipid composition, these data suggest that the ovarian follicle contains the metabolic machinery that is potentially capable of metabolizing FA from nutrient uptake, degrading and producing lipoproteins, performing de novo lipogenesis, and accumulating lipid reserves, thus assuring oocyte energy supply, membrane synthesis, and lipid-mediated signaling to maintain follicular homeostasis.


Asunto(s)
Metabolismo de los Lípidos , Folículo Ovárico/metabolismo , Transcriptoma , Animales , Bovinos , Femenino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA