Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Dairy Sci ; 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38825123

RESUMEN

The objectives were to investigate the effect of feeding and visiting behavior of dairy cattle on CH4 and H2 production measured with voluntary visits to the GreenFeed system (GF) and to determine whether these effects depended on basal diet (BD) and 3-nitrooxypropanol (3-NOP) supplementation. The experiment involved 64 lactating dairy cattle (146 ± 45 d in milk at the start of trial; mean ± SD) in 2 overlapping crossover trials, each consisting of 2 measurement periods. Cows within block were randomly allocated to 1 of 3 types of BD: a grass silage-based diet consisting of 30% concentrates and 70% grass silage (DM basis), a grass silage- and corn silage-mixed diet consisting of 30% concentrates, 42% grass silage, and 28% corn silage (DM basis), or a corn silage-based diet consisting of 30% concentrates, 14% grass silage, and 56% corn silage (DM basis). Each type of BD was subsequently supplemented with 0 and 60 mg 3-NOP/kg DM in one crossover, or 0 and 80 mg 3-NOP/kg DM in the other crossover. Diets were provided in feed bins which automatically recorded feed intake and feeding behavior, with additional concentrate fed in the GF. All visits to the GF that resulted in a spot measurement of both CH4 and H2 emission were analyzed in relation to feeding behavior (e.g., meal size and time interval to preceding meal) as well as GF visiting behavior (e.g., duration of visit). Feeding and GF visiting behavior was related to CH4 and H2 production measured with the GF, in particular the meal size before a GF measurement and the time interval between a GF measurement and the preceding meal. Relationships between gas production and both feeding and GF visiting behavior were affected both by type of BD and 3-NOP supplementation. With an increase of the time interval between a GF measurement and the preceding meal, CH4 production decreased with 0 mg 3-NOP/kg DM but increased with 60 and 80 mg 3-NOP/kg DM, whereas type of BD did not affect these relationships. In contrast, CH4 production increased with 0 mg 3-NOP/kg DM but decreased with 60 and 80 mg 3-NOP/kg DM upon an increase in the size of the meal preceding a GF measurement. With an increase of the time interval between a GF measurement and the preceding meal, or with a decrease of the size of the meal preceding a GF measurement, H2 production decreased for all treatments, although the effect was generally somewhat stronger for 60 and 80 mg 3-NOP/kg DM than for 0 mg 3-NOP/kg DM. Hence, the timing of GF measurements next to feeding and GF visiting behavior are essential when assessing the effect of dietary treatment on the production of CH4 and H2 in a setting where a spot sampling device such as a GF is used and where the measurements depend on voluntary visits from the cows.

2.
J Dairy Sci ; 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38395398

RESUMEN

The objective was to determine the long-term effect of 3-nitrooxypropanol (3-NOP) on CH4 emission and milk production characteristics from dairy cows receiving 3-NOP in their diet for a full year, covering all lactation stages of the dairy cows. Sixty-four late-lactation Holstein Friesian cows (34% primiparous) were blocked in pairs, based on expected calving date, parity, and daily milk yield. The experiment started with an adaptation period of 1 week followed by a covariate period of 3 weeks in which all cows received the same basal diet and baseline measurements were performed. Directly after, cows within a block were randomly allocated to 1 of 2 dietary treatments: a diet containing on average 69.8 mg 3-NOP/kg DM (total ration level, corrected for intake of non-supplemented GreenFeed bait) and a diet containing a placebo. Forage composition as well as forage to concentrate ratio altered with lactation stage (i.e., dry period and early, mid, and late lactation). Diets were provided as a total mixed ration and additional bait was fed in GreenFeed units which were used for emission measurements. Supplementation of 3-NOP did not affect total dry matter intake (DMI), body weight or body condition score, but resulted in a 6.5% increase in the yields of energy-corrected milk and fat- and protein-corrected milk (FPCM). Furthermore, milk fat and protein as well as feed efficiency were increased upon 3-NOP supplementation. Overall, a reduction of 21%, 20%, and 27% was achieved for CH4 production (g/d), yield (g/kg DMI), and intensity (g/kg FPCM), respectively, upon 3-NOP supplementation. The CH4 mitigation potential of 3-NOP was affected by the lactation stage dependent diet to which 3-NOP was supplemented. On average, a 16%, 20%, 16%, and 26% reduction in CH4 yield (g/kg DMI) was achieved upon 3-NOP supplementation for the dry period, and early, mid, and late lactation diet, respectively. The CH4 mitigation potential of 3-NOP was affected by the length of 3-NOP supplementation within a lactation stage dependent diet and by variation in diet composition within a lactation stage dependent diet as a result of changes in grass and corn silage silos. In conclusion, 3-NOP reduced CH4 emission from cows receiving 3-NOP for a year, with a positive impact on production characteristics. The CH4 mitigation potential of 3-NOP was influenced by diet type, diet composition, and nutrition value, and the efficacy of 3-NOP appeared to decline over time but not continuously. Associated with changes in diet composition, increased efficacy of 3-NOP was observed at the start of the trial, at the start of a new lactation, and, importantly, at the end of the trial. These results suggests that diet composition has a large effect on the efficacy of 3-NOP, perhaps even larger than the week of supplementation after first introduction of 3-NOP. Further studies are needed to clarify the long-term effect of 3-NOP on CH4 emission and to further investigate the effect that variation in diet composition may have on the mitigation potential of 3-NOP.

3.
J Dairy Sci ; 107(2): 857-869, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37709037

RESUMEN

This study aimed to investigate the effect of administering a standardized blend of cinnamaldehyde, eugenol, and Capsicum oleoresin (CEC) to lactating dairy cattle for 84 d (i.e., 12 wk) on enteric CH4 emission, feed intake, milk yield and composition, and body weight. The experiment involved 56 Holstein-Friesian dairy cows (145 ± 31.1 d in milk at the start of the trial; mean ± standard deviation) in a randomized complete block design. Cows were blocked in pairs according to parity, lactation stage, and current milk yield, and randomly allocated to 1 of the 2 dietary treatments: a diet including 54.5 mg of CEC/kg of DM or a control diet without CEC. Diets were provided as partial mixed rations in feed bins, which automatically recorded individual feed intake. Additional concentrate was fed in the GreenFeed system that was used to measure emissions of CO2, CH4, and H2. Feeding CEC decreased CH4 yield (g/kg DMI) by on average 3.4% over the complete 12-wk period and by on average 3.9% from 6 wk after the start of supplementation onward. Feeding CEC simultaneously increased feed intake and body weight, and tended to increase milk protein content, whereas no negative responses were observed. These results must be further investigated and confirmed in longer-term in vivo experiments.


Asunto(s)
Acroleína/análogos & derivados , Capsicum , Lactancia , Extractos Vegetales , Femenino , Embarazo , Bovinos , Animales , Lactancia/fisiología , Eugenol/farmacología , Eugenol/metabolismo , Capsicum/metabolismo , Metano/metabolismo , Dieta/veterinaria , Peso Corporal , Rumen/metabolismo
4.
Sci Rep ; 13(1): 21305, 2023 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-38042941

RESUMEN

Methane (CH4) emissions from ruminants are of a significant environmental concern, necessitating accurate prediction for emission inventories. Existing models rely solely on dietary and host animal-related data, ignoring the predicting power of rumen microbiota, the source of CH4. To address this limitation, we developed novel CH4 prediction models incorporating rumen microbes as predictors, alongside animal- and feed-related predictors using four statistical/machine learning (ML) methods. These include random forest combined with boosting (RF-B), least absolute shrinkage and selection operator (LASSO), generalized linear mixed model with LASSO (glmmLasso), and smoothly clipped absolute deviation (SCAD) implemented on linear mixed models. With a sheep dataset (218 observations) of both animal data and rumen microbiota data (relative sequence abundance of 330 genera of rumen bacteria, archaea, protozoa, and fungi), we developed linear mixed models to predict CH4 production (g CH4/animal·d, ANIM-B models) and CH4 yield (g CH4/kg of dry matter intake, DMI-B models). We also developed models solely based on animal-related data. Prediction performance was evaluated 200 times with random data splits, while fitting performance was assessed without data splitting. The inclusion of microbial predictors improved the models, as indicated by decreased root mean square prediction error (RMSPE) and mean absolute error (MAE), and increased Lin's concordance correlation coefficient (CCC). Both glmmLasso and SCAD reduced the Akaike information criterion (AIC) and Bayesian information criterion (BIC) for both the ANIM-B and the DMI-B models, while the other two ML methods had mixed outcomes. By balancing prediction performance and fitting performance, we obtained one ANIM-B model (containing 10 genera of bacteria and 3 animal data) fitted using glmmLasso and one DMI-B model (5 genera of bacteria and 1 animal datum) fitted using SCAD. This study highlights the importance of incorporating rumen microbiota data in CH4 prediction models to enhance accuracy and robustness. Additionally, ML methods facilitate the selection of microbial predictors from high-dimensional metataxonomic data of the rumen microbiota without overfitting. Moreover, the identified microbial predictors can serve as biomarkers of CH4 emissions from sheep, providing valuable insights for future research and mitigation strategies.


Asunto(s)
Metano , Rumen , Ovinos , Animales , Femenino , Teorema de Bayes , Rumiantes , Dieta/veterinaria , Bacterias/genética , Alimentación Animal/análisis , Lactancia
5.
J Dairy Sci ; 106(9): 6094-6113, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37479574

RESUMEN

This study aimed to evaluate trade-offs between enteric and manure CH4 emissions, and the size of synergistic effects for CH4 and nitrogenous emissions (NH3 and N2O). Sixty-four Holstein-Friesian cows were blocked in groups of 4 based on parity, lactation stage, and milk yield. Cows within a block were randomly allocated to a dietary sequence in a crossover design with a grass silage-based diet (GS) and a corn silage-based diet (CS). The GS diet consisted of 50% grass silage and 50% concentrate, and CS consisted of 10% grass silage, 40% corn silage, and 50% concentrate (dry matter basis). The composition of the concentrate was identical for both diets. Cows were housed in groups of 16 animals, in 4 mechanically ventilated barn units for independent emission measurement. Treatment periods were composed of a 2-wk adaptation period followed by a 5-wk measurement period, 1 wk of which was without cows to allow separation of enteric and manure emissions. In each barn unit, ventilation rates and concentrations of CH4, CO2, NH3, and N2O in incoming and outgoing air were measured. Cow excretion of organic matter was higher for CS compared with GS. Enteric CH4 and cow-associated NH3 and N2O emissions (i.e., manure emissions excluded) were lower for CS compared with GS (-11, -40, and -45%, respectively). The CH4 and N2O emissions from stored manure (i.e., in absence of cows) were not affected by diet, whereas that of NH3 emission tended to be lower for CS compared with GS. In conclusion, there was no trade-off between enteric and manure CH4 emissions, and there were synergistic effects for CH4 and nitrogenous emissions when grass silage was exchanged for corn silage, without balancing the diets for crude protein content, in this short-term study.


Asunto(s)
Poaceae , Zea mays , Femenino , Embarazo , Bovinos , Animales , Estiércol , Ensilaje , Dieta/veterinaria , Nitrógeno
6.
J Dairy Sci ; 106(10): 6834-6848, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37210350

RESUMEN

Estimating daily enteric hydrogen (H2) and methane (CH4) emitted from dairy cattle using spot sampling techniques requires accurate sampling schemes. These sampling schemes determine the number of daily samplings and their intervals. This simulation study assessed the accuracy of daily H2 and CH4 emissions from dairy cattle using various sampling schemes for gas collection. Gas emission data were available from a crossover experiment with 28 cows fed twice daily at 80% to 95% of the ad libitum intake, and an experiment that used a repeated randomized block design with 16 cows twice daily fed ad libitum. Gases were sampled every 12 to 15 min for 3 consecutive days in climate respiration chambers. Feed was fed in 2 equal portions per day in both experiments. Per individual cow-period combination, generalized additive models were fitted to all diurnal H2 and CH4 emission profiles. Per profile, the models were fitted using the generalized cross-validation, REML, REML while assuming correlated residuals, and REML while assuming heteroscedastic residuals. The areas under the curve (AUC) of these 4 fits were numerically integrated over 24 h to compute the daily production and compared with the mean of all data points, which was considered the reference. Next, the best of the 4 fits was used to evaluate 9 different sampling schemes. This evaluation determined the average predicted values sampled at 0.5, 1, and 2 h intervals starting at 0 h from morning feeding, at 1 and 2 h intervals starting at 0.5 h from morning feeding, at 6 and 8 h intervals starting at 2 h from morning feeding, and at 2 unequally spaced intervals with 2 or 3 samples per day. Sampling every 0.5 h was needed to obtain daily H2 productions not different from the selected AUC for the restricted feeding experiment, whereas less frequent sampling had predictions varying from 47% to 233% of the AUC. For the ad libitum feeding experiment, sampling schemes had H2 productions from 85% to 155% of the corresponding AUC. For the restricted feeding experiment, daily CH4 production needed samplings every 2 h or shorter, or 1 h or shorter, depending on sampling time after feeding, whereas sampling scheme did not affect CH4 production for the twice daily ad libitum feeding experiment. In conclusion, sampling scheme had a major impact on predicted daily H2 production, particularly with restricted feeding, whereas daily CH4 production was less severely affected by sampling scheme.


Asunto(s)
Lactancia , Leche , Femenino , Bovinos , Animales , Leche/química , Dieta/veterinaria , Hidrógeno , Metano
7.
J Dairy Sci ; 106(2): 927-936, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36494226

RESUMEN

Ruminants, particularly dairy and beef cattle, contribute to climate change through mostly enteric methane emissions. Several mitigating options have been proposed, including the feed additive 3-nitrooxypropanol (3-NOP). The objectives of this study were to explain the variability in the mitigating effect of 3-NOP and to investigate the interaction between diet composition and 3-NOP dose, using meta-analytical approaches. Data from 13 articles (14 experiments) met the selection criteria for inclusion in the meta-analysis, and 48 treatment means were used for the analysis. Mean differences were calculated as 3-NOP treatment mean minus control treatment mean and then expressed as a percentage of the control mean. Three types of models were developed: (1) one including 3-NOP dose, overall mean, and individual covariate; (2) a combination of neutral detergent fiber (NDF), 3-NOP dose, and overall mean; and (3) one selected model from all combinations of up to 5 covariates, which were compared using a leave-one-out cross validation method. Models including only 3-NOP dose resulted in a significant reduction of 32.7%, 30.9%, and 32.6% for CH4 production (g/d), yield (g/kg dry matter intake), and intensity (g/kg energy-corrected milk), respectively, at an average 3-NOP dose of 70.5 mg/kg dry matter (DM). The greater the NDF content in the diet, the lower the reduction efficiency for a given 3-NOP dose. For 10 g/kg DM increase in NDF content from its mean (329 g of NDF/kg of DM) the 3-NOP effect on CH4 production was impaired by 0.633%, the 3-NOP effect on CH4 yield by 0.647%, and the 3-NOP effect on CH4 intensity by 0.723%. The analysis based on leave-one-out cross validation showed an increase in NDF and crude fat content reduces efficacy of 3-NOP and an increase in 3-NOP dose increases efficacy. A 1% (10 g/kg) DM decrease in dietary NDF content from its mean may increase the efficacy of 3-NOP in reducing CH4 production by 0.915%. A 1% (10 g/kg DM) decrease in dietary crude fat content from its mean enhances the efficacy of 3-NOP on CH4 production by 3.080% at a given dose and NDF level. For CH4 yield, next to 3-NOP dose, dietary NDF content and dietary crude fat content were included in the selected model, but also dietary starch content with an opposite direction to NDF and crude fat. The effect of 3-NOP dose on CH4 intensity was similar to its effect on CH4 production, whereas the effect of dietary NDF content was slightly lower. Expanding the previously published models with the newly available data published from trials since then improved model performance, hence demonstrating the value of regularly updating meta-analyses if a wider range of data becomes available.


Asunto(s)
Lactancia , Leche , Femenino , Bovinos , Animales , Leche/química , Dieta/veterinaria , Rumiantes , Fibras de la Dieta/análisis , Grasas de la Dieta/análisis , Metano , Alimentación Animal/análisis , Rumen/química
8.
Sci Total Environ ; 856(Pt 2): 159128, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36181820

RESUMEN

On-farm methane (CH4) emissions need to be estimated accurately so that the mitigation effect of recommended practices can be accounted for. In the present study prediction equations for enteric CH4 have been developed in lieu of expensive animal measurement approaches. Our objectives were to: (1) compile a dataset from individual beef cattle data for the Latin America and Caribbean (LAC) region; (2) determine main predictors of CH4 emission variables; (3) develop and cross-validate prediction models according to dietary forage content (DFC); and (4) compare the predictive ability of these newly-developed models with extant equations reported in literature, including those currently used for CH4 inventories in LAC countries. After outlier's screening, 1100 beef cattle observations from 55 studies were kept in the final dataset (∼ 50 % of the original dataset). Mixed-effects models were fitted with a random effect of study. The whole dataset was split according to DFC into a subset for all-forage (DFC = 100 %), high-forage (94 % ≥ DFC ≥ 54 %), and low-forage (50 % ≥ DFC) diets. Feed intake and average daily gain (ADG) were the main predictors of CH4 emission (g d-1), whereas this was feeding level [dry matter intake (DMI) as % of body weight] for CH4 yield (g kg-1 DMI). The newly-developed models were more accurate than IPCC Tier 2 equations for all subsets. Simple and multiple regression models including ADG were accurate and a feasible option to predict CH4 emission when data on feed intake are not available. Methane yield was not well predicted by any extant equation in contrast to the newly-developed models. The present study delivered new models that may be alternatives for the IPCC Tier 2 equations to improve CH4 prediction for beef cattle in inventories of LAC countries based either on more or less readily available data.


Asunto(s)
Alimentación Animal , Metano , Animales , Bovinos , Alimentación Animal/análisis , América Latina , Dieta/veterinaria , Ingestión de Alimentos
9.
Proc Natl Acad Sci U S A ; 119(20): e2111294119, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35537050

RESUMEN

To meet the 1.5 °C target, methane (CH4) from ruminants must be reduced by 11 to 30% by 2030 and 24 to 47% by 2050 compared to 2010 levels. A meta-analysis identified strategies to decrease product-based (PB; CH4 per unit meat or milk) and absolute (ABS) enteric CH4 emissions while maintaining or increasing animal productivity (AP; weight gain or milk yield). Next, the potential of different adoption rates of one PB or one ABS strategy to contribute to the 1.5 °C target was estimated. The database included findings from 430 peer-reviewed studies, which reported 98 mitigation strategies that can be classified into three categories: animal and feed management, diet formulation, and rumen manipulation. A random-effects meta-analysis weighted by inverse variance was carried out. Three PB strategies­namely, increasing feeding level, decreasing grass maturity, and decreasing dietary forage-to-concentrate ratio­decreased CH4 per unit meat or milk by on average 12% and increased AP by a median of 17%. Five ABS strategies­namely CH4 inhibitors, tanniferous forages, electron sinks, oils and fats, and oilseeds­decreased daily methane by on average 21%. Globally, only 100% adoption of the most effective PB and ABS strategies can meet the 1.5 °C target by 2030 but not 2050, because mitigation effects are offset by projected increases in CH4 due to increasing milk and meat demand. Notably, by 2030 and 2050, low- and middle-income countries may not meet their contribution to the 1.5 °C target for this same reason, whereas high-income countries could meet their contributions due to only a minor projected increase in enteric CH4 emissions.


Asunto(s)
Metano , Rumiantes , África , Animales , Países en Desarrollo , Europa (Continente) , Calentamiento Global/prevención & control , Metano/análisis
10.
J Dairy Sci ; 105(5): 4064-4082, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35221072

RESUMEN

The objective of this study was to investigate whether the CH4 mitigation potential of 3-nitrooxypropanol (3-NOP) in dairy cattle was affected by basal diet (BD) composition. The experiment involved 64 Holstein-Friesian dairy cows (146 ± 45 d in milk at the start of trial; mean ± SD) in 2 overlapping crossover trials, each consisting of 2 measurement periods. Cows were blocked according to parity, d in milk, and milk yield, and randomly allocated to 1 of 3 diets: a grass silage-based diet (GS) consisting of 30% concentrates and 70% grass silage (DM basis), a grass silage- and corn silage-mixed diet (GSCS) consisting of 30% concentrates, 42% grass silage, and 28% corn silage (DM basis), or a corn silage-based diet (CS) consisting of 30% concentrates, 14% grass silage, and 56% corn silage (DM basis). Two types of concentrates were formulated, viz. a concentrate for the GS diet and a concentrate for the CS diet, to meet the energy and protein requirements for maintenance and milk production. The concentrate for the GSCS diet consisted of a 50:50 mixture of both concentrates. Subsequently, the cows within each type of BD received 2 treatments in a crossover design: either 60 mg of 3-NOP/kg of DM (NOP60) and a placebo with 0 mg of 3-NOP/kg of DM (NOP0) in one crossover or 80 mg of 3-NOP/kg of DM (NOP80) and NOP0 in the other crossover. Diets were provided as total mixed ration in feed bins, which automatically recorded feed intake. Additional concentrate was fed in the GreenFeed system that was used to measure emissions of CH4 and H2. The CS diets resulted in a reduced CH4 yield (g/kg DMI) and CH4 intensity (g/kg milk). Feeding 3-NOP resulted in a decreased DMI. Milk production and composition did not differ between NOP60 and NOP0, whereas milk yield and the yield of major components decreased for NOP80 compared with NOP0. Feed efficiency was not affected by feeding 3-NOP. Interactions between BD and supplementation of 3-NOP were observed for the production (g/d) and yield (g/kg DMI) of both CH4 and H2, indicating that the mitigating effect of 3-NOP depended on the composition of the BD. Emissions of CH4 decreased upon 3-NOP supplementation for all BD, but the decrease in CH4 emissions was smaller for GS (-26.2% for NOP60 and -28.4% for NOP80 in CH4 yield) compared with both GSCS (-35.1% for NOP60 and -37.9% for NOP80 for CH4 yield) and CS (-34.8% for NOP60 and -41.6% for NOP80 for CH4 yield), with no difference between the latter 2 BD. Emissions of H2 increased upon 3-NOP supplementation for all BD, but the H2 yield (g/kg DMI) increased 3.16 and 3.30-fold, respectively, when NOP60 and NOP80 were supplemented to GS, and 4.70 and 4.96 fold, respectively, when NOP60 and NOP80 were supplemented to CS. In conclusion, 3-NOP can effectively decrease CH4 emissions in dairy cows across diets, but the level of CH4 mitigation is greater when supplemented in a corn silage-based diet compared with a grass silage-based diet.


Asunto(s)
Lactancia , Metano , Animales , Bovinos , Dieta/veterinaria , Femenino , Poaceae/metabolismo , Embarazo , Propanoles , Ensilaje/análisis , Zea mays/metabolismo
11.
Sci Total Environ ; 825: 153982, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35202679

RESUMEN

Successful mitigation efforts entail accurate estimation of on-farm emission and prediction models can be an alternative to current laborious and costly in vivo CH4 measurement techniques. This study aimed to: (1) collate a database of individual dairy cattle CH4 emission data from studies conducted in the Latin America and Caribbean (LAC) region; (2) identify key variables for predicting CH4 production (g d-1) and yield [g kg-1 of dry matter intake (DMI)]; (3) develop and cross-validate these newly-developed models; and (4) compare models' predictive ability with equations currently used to support national greenhouse gas (GHG) inventories. A total of 42 studies including 1327 individual dairy cattle records were collated. After removing outliers, the final database retained 34 studies and 610 animal records. Production and yield of CH4 were predicted by fitting mixed-effects models with a random effect of study. Evaluation of developed models and fourteen extant equations was assessed on all-data, confined, and grazing cows subsets. Feed intake was the most important predictor of CH4 production. Our best-developed CH4 production models outperformed Tier 2 equations from the Intergovernmental Panel on Climate Change (IPCC) in the all-data and grazing subsets, whereas they had similar performance for confined animals. Developed CH4 production models that include milk yield can be accurate and useful when feed intake is missing. Some extant equations had similar predictive performance to our best-developed models and can be an option for predicting CH4 production from LAC dairy cows. Extant equations were not accurate in predicting CH4 yield. The use of the newly-developed models rather than extant equations based on energy conversion factors, as applied by the IPCC, can substantially improve the accuracy of GHG inventories in LAC countries.


Asunto(s)
Dieta , Metano , Animales , Bovinos , Dieta/veterinaria , Ingestión de Alimentos , Femenino , Lactancia , América Latina , Metano/análisis , Leche/química
12.
J Dairy Sci ; 104(12): 12520-12539, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34482977

RESUMEN

The objectives of this study were to induce hindgut and metabolic acidosis via abomasal infusion of corn starch and ß-hydroxybutyrate (BHB), respectively, and to determine the effects of these physiological states in early-lactation dairy cows. In a 6 × 6 Latin square design, 6 rumen-fistulated Holstein-Friesian dairy cows (66 ± 18 d in milk) were subjected to 5 d of continuous abomasal infusion treatments followed by 2 d of rest. The abomasal infusion treatments followed a 3 × 2 factorial design, with 3 levels of corn starch and 2 levels of BHB. The infusions were water as control, 1.5 kg of corn starch/d, 3.0 kg of corn starch/d, 8.0 mol BHB/d, 1.5 kg of corn starch/d + 8.0 mol BHB/d, or 3.0 kg of corn starch/d + 8.0 mol BHB/d. A total mixed ration consisting of 35.0% grass silage, 37.4% corn silage, and 27.6% concentrate (on a dry matter basis) was fed at 90% of ad libitum intake of individual cows. The experiment was conducted in climate respiration chambers to facilitate determination of energy and N balance. Fecal pH decreased with each level of corn starch infused into the abomasum and was 6.49, 6.00, and 5.15 with 0.0, 1.5, and 3.0 kg of corn starch/d, respectively, suggesting that hindgut acidosis was induced with corn starch infusion. No systemic inflammatory response was observed and the permeability of the intestine or hindgut epithelium was not affected by the more acidic conditions. This induced hindgut acidosis was associated with decreased digestibility of nutrients, except for crude fat and NDF, which were not affected. Induced hindgut acidosis did not affect milk production and composition and energy balance, but increased milk N efficiency. Abomasal infusion of BHB resulted in a compensated metabolic acidosis, which was characterized by a clear disturbance of acid-base status (i.e., decreased blood total CO2, HCO3, and base excess, and a tendency for decreased urinary pH), whereas blood pH remained within a physiologically normal range. Abomasal infusion of BHB resulted in increased concentrations of BHB in milk and plasma, but both remained well below the critical threshold values for subclinical ketosis. Induced compensated metabolic acidosis, as a result of abomasally infused BHB, increased energy retained as body fat, did not affect milk production and composition or inflammatory response, but increased intestinal permeability.


Asunto(s)
Acidosis , Enfermedades de los Bovinos , Ácido 3-Hidroxibutírico , Abomaso , Acidosis/veterinaria , Animales , Bovinos , Dieta/veterinaria , Digestión , Lactancia , Leche , Rumen , Ensilaje/análisis , Almidón , Zea mays
13.
Animals (Basel) ; 11(8)2021 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-34438751

RESUMEN

Livestock feed encompasses both human edible and human inedible components. Human edible feed components may become less available for livestock. Especially for proteins, this calls for action. This review focuses on using alternative protein sources in feed and protein efficiency, the expected problems, and how these problems could be solved. Breeding for higher protein efficiency leading to less use of the protein sources may be one strategy. Replacing (part of) the human edible feed components with human inedible components may be another strategy, which could be combined with breeding for livestock that can efficiently digest novel protein feed sources. The potential use of novel protein sources is discussed. We discuss the present knowledge on novel protein sources, including the consequences for animal performance and production costs, and make recommendations for the use and optimization of novel protein sources (1) to improve our knowledge on the inclusion of human inedible protein into the diet of livestock, (2) because cooperation between animal breeders and nutritionists is needed to share knowledge and combine expertise, and (3) to investigate the effect of animal-specific digestibility of protein sources for selective breeding for each protein source and for precision feeding. Nutrigenetics and nutrigenomics will be important tools.

14.
Sci Total Environ ; 769: 144989, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33485195

RESUMEN

This paper reviews existing on-farm GHG accounting models for dairy cattle systems and their ability to capture the effect of dietary strategies in GHG abatement. The focus is on methane (CH4) emissions from enteric and manure (animal excreta) sources and nitrous oxide (N2O) emissions from animal excreta. We identified three generic modelling approaches, based on the degree to which models capture diet-related characteristics: from 'none' (Type 1) to 'some' by combining key diet parameters with emission factors (EF) (Type 2) to 'many' by using process-based modelling (Type 3). Most of the selected on-farm GHG models have adopted a Type 2 approach, but a few hybrid Type 2 / Type 3 approaches have been developed recently that combine empirical modelling (through the use of CH4 and/or N2O emission factors; EF) and process-based modelling (mostly through rumen and whole tract fermentation and digestion). Empirical models comprising key dietary inputs (i.e., dry matter intake and organic matter digestibility) can predict CH4 and N2O emissions with reasonable accuracy. However, the impact of GHG mitigation strategies often needs to be assessed in a more integrated way, and Type 1 and Type 2 models frequently lack the biological foundation to do this. Only Type 3 models represent underlying mechanisms such as ruminal and total-tract digestive processes and excreta composition that can capture dietary effects on GHG emissions in a more biological manner. Overall, the better a model can simulate rumen function, the greater the opportunity to include diet characteristics in addition to commonly used variables, and thus the greater the opportunity to capture dietary mitigation strategies. The value of capturing the effect of additional animal feed characteristics on the prediction of on-farm GHG emissions needs to be carefully balanced against gains in accuracy, the need for additional input and activity data, and the variability encountered on-farm.


Asunto(s)
Gases de Efecto Invernadero , Animales , Bovinos , Dieta/veterinaria , Granjas , Efecto Invernadero , Metano/análisis , Rumiantes
15.
J Dairy Sci ; 104(4): 4174-4191, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33485681

RESUMEN

Next to rumen acidosis, other forms of acidosis may also affect lactational performance of cows. Therefore, the effects of hindgut acidosis, induced via abomasal infusion of ground corn, and metabolic acidosis, induced via abomasal infusion of NH4Cl, were studied in cows in early lactation. Observations were made on intake and digestibility of nutrients, lactation performance, energy and N partitioning, blood acid-base status, and rumen and hindgut fermentation characteristics. In a 6 × 6 Latin square design, 6 rumen-fistulated, second-lactation Holstein-Friesian dairy cows (48 ± 17 d in milk) were subjected to 5 d of continuous abomasal infusions of water as control, or solutions of 2.5 mol of NH4Cl/d, 5.0 mol of NH4Cl/d, 3.0 kg of ground corn/d, or the combination of ground corn with either of the 2 NH4Cl levels, followed by 2 d of rest. Treatment solutions were administered via peristaltic pumps through infusion lines attached to the rumen cannula plug and an abomasal infusion line with a flexible disk (equipped with holes to allow digesta passage) to secure its placement through the sulcus omasi. A total mixed ration consisting of 70% grass silage and 30% concentrate (on dry matter basis) was fed at 95% of ad libitum intake of individual cows. The experiment was conducted in climate respiration chambers to determine feed intake, lactation performance, and energy and N balance. Abomasal infusion of NH4Cl affected the acid-base status of the cows, but more strongly when in combination with abomasal infusion of ground corn. Metabolic acidosis (defined as a blood pH < 7.40, blood HCO3 concentration < 25.0 mmol/L, and a negative base excess) was observed with 5.0 mol of NH4Cl/d, 3.0 kg of ground corn/d + 2.5 mol of NH4Cl/d, and 3.0 kg of ground corn/d + 5.0 mol of NH4Cl/d. Metabolic acidosis was associated with decreased milk lactose content, metabolic body weight, energy retained as protein, and fecal N excretion, and increased urine N excretion, and tended to decrease intake of nutrients. Digestibility of several nutrients increased with 5.0 mol of NH4Cl/d, likely as a result of decreased intake. Abomasal ground corn infusion resulted in hindgut acidosis, where fecal pH decreased from 6.86 without ground corn to 6.00 with ground corn, regardless of NH4Cl level. The decrease in fecal pH was likely the result of increased hindgut fermentation, evidenced by increased fecal volatile fatty acid concentrations. Hindgut acidosis was associated with decreased digestibility of nutrients, except for starch, which increased, and crude fat, which was not affected. No systemic inflammatory response was observed, suggesting that the hindgut epithelium was not severely affected by the more acidic conditions or barrier damage. Abomasal infusion of ground corn increased milk yield, milk protein and lactose yield, fecal N excretion, N use efficiency, and total energy retained as well as energy retained in fat, and reduced milk fat content and urine N excretion.


Asunto(s)
Acidosis , Enfermedades de los Bovinos , Acidosis/metabolismo , Acidosis/veterinaria , Cloruro de Amonio , Animales , Bovinos , Enfermedades de los Bovinos/metabolismo , Dieta/veterinaria , Digestión , Femenino , Fermentación , Lactancia , Rumen/metabolismo , Ensilaje/análisis , Zea mays
16.
J Dairy Sci ; 103(9): 8074-8093, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32600756

RESUMEN

The aim of this study was to determine the methane (CH4) mitigation potential of 3-nitrooxypropanol and the persistency of its effect when fed to dairy cows in early lactation. Sixteen Holstein-Friesian cows (all multiparous; 11 cows in their second parity and 5 cows in their third parity) were blocked in pairs, based on actual calving date, parity, and previous lactation milk yield, and randomly allocated to 1 of 2 dietary treatments: a diet including 51 mg of 3-nitrooxypropanol/kg of dry matter (3-NOP) and a diet including a placebo at the same concentration (CON). Cows were fed a 35% grass silage, 25% corn silage, and 40% concentrate (on dry matter basis) diet from 3 d after calving up to 115 d in milk (DIM). Every 4 weeks, the cows were housed in climate respiration chambers for 5 d to measure lactation performance, feed and nutrient intake, apparent total-tract digestibility of nutrients, energy and N metabolism, and gaseous exchange (4 chamber visits per cow in total, representing 27, 55, 83, and 111 DIM). Feeding 3-NOP did not affect dry matter intake (DMI), milk yield, milk component yield, or feed efficiency. These variables were affected by stage of lactation, following the expected pattern of advanced lactation. Feeding 3-NOP did not affect CH4 production (g/d) at 27 and 83 DIM, but decreased CH4 production at 55 and 111 DIM by an average of 18.5%. This response in CH4 production is most likely due to the differences observed in feed intake across the different stages of lactation because CH4 yield (g/kg of DMI) was lower (on average 16%) at each stage of lactation upon feeding 3-NOP. On average, feeding 3-NOP increased H2 production and intensity 12-fold; with the control diet, H2 yield did not differ between the different stages of lactation, whereas with the 3-NOP treatment H2 yield decreased from 0.429 g/kg of DMI at 27 DIM to 0.387 g/kg of DMI at 111 DIM. The apparent total-tract digestibility of dry matter, organic matter, neutral detergent fiber, and gross energy was greater for the 3-NOP treatment. In comparison to the control treatment, 3-NOP did not affect energy and N balance, except for a greater metabolizable energy intake to gross energy intake ratio (65.4 and 63.7%, respectively) and a greater body weight gain (average 0.90 and 0.01% body weight change, respectively). In conclusion, feeding 3-NOP is an effective strategy to decrease CH4 emissions (while increasing H2 emission) in early lactation Holstein-Friesian cows with positive effects on apparent total-tract digestibility of nutrients.


Asunto(s)
Digestión/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Hidrógeno/metabolismo , Metano/metabolismo , Propanoles/farmacología , Animales , Bovinos , Dieta/veterinaria , Fibras de la Dieta/metabolismo , Ingestión de Energía , Femenino , Lactancia/fisiología , Leche/metabolismo , Nutrientes/metabolismo , Poaceae/metabolismo , Embarazo , Distribución Aleatoria , Ensilaje , Zea mays/metabolismo
17.
J Anim Sci Biotechnol ; 11: 53, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32477515

RESUMEN

BACKGROUND: Characterising the regulation of milk component synthesis in response to macronutrient supply is critical for understanding the implications of nutritional interventions on milk production. Gene expression in mammary gland secretory cells was measured using RNA isolated from milk fat globules from 6 Holstein-Friesian cows receiving 5-d abomasal infusions of saline, essential amino acids (AA), or glucose (GG) or palm olein (LG) without (LAA) or with (HAA) essential AA, according to a 6 × 6 Latin square design. RNA was isolated from milk fat samples collected on d 5 of infusion and subjected to real-time quantitative PCR. We hypothesised that mRNA expression of genes involved in de novo milk fatty acid (FA) synthesis would be differently affected by GG and LG, and that expression of genes regulating transfer of tricarboxylic acid cycle intermediates would increase at the HAA level. We also hypothesised that the HAA level would affect genes regulating endoplasmic reticulum (ER) homeostasis but would not affect genes related to the mechanistic target of rapamycin complex 1 (mTORC1) or the integrated stress response (ISR) network. RESULTS: Infusion of GG did not affect de novo milk FA yield but decreased expression of FA synthase (FASN). Infusion of LG decreased de novo FA yield and tended to decrease expression of acetyl-CoA carboxylase 1 (ACC1). The HAA level increased both de novo FA yield and expression of ACC1, and tended to decrease expression of mitochondrial phosphoenolpyruvate carboxykinase (PCK2). mRNA expression of mTORC1 signaling participants was not affected by GG, LG, or AA level. Expression of the ε subunit of the ISR constituent eukaryotic translation initiation factor 2B (EIF2B5) tended to increase at the HAA level, but only in the presence of LG. X-box binding protein 1 (XBP1) mRNA was activated in response to LG and the HAA level. CONCLUSIONS: Results show that expression of genes involved in de novo FA synthesis responded to glucogenic, lipogenic, and aminogenic substrates, whereas genes regulating intermediate flux through the tricarboxylic acid cycle were not majorly affected. Results also suggest that after 5 d of AA supplementation, milk protein synthesis is supported by enhanced ER biogenesis instead of signaling through the mTORC1 or ISR networks.

18.
J Theor Biol ; 480: 150-165, 2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31401059

RESUMEN

Dynamic modeling of mechanisms driving volatile fatty acid and hydrogen production in the rumen microbial ecosystem contributes to the heuristic prediction of CH4 emissions from dairy cattle into the environment. Existing mathematical rumen models, however, lack the representation of these mechanisms. A dynamic mechanistic model was developed that simulates the thermodynamic control of hydrogen partial pressure ( [Formula: see text] ) on volatile fatty acid (VFA) fermentation pathways via the NAD+ to NADH ratio in fermentative microbes, and methanogenesis in the bovine rumen. This model is unique and closely aligns with principles of reaction kinetics and thermodynamics. Model state variables represent ruminal carbohydrate substrates, bacteria and protozoa, methanogens, and gaseous and dissolved fermentation end products. The model was extended with static equations to model the hindgut metabolism. Feed composition and twice daily feeding were used as model inputs. Model parameters were estimated to experimental data using a Bayesian calibration procedure, after which the uncertainty of the parameter distribution on the model output was assessed. The model predicted a marked peak in [Formula: see text] after feeding that rapidly declined in time. This peak in [Formula: see text] caused a decrease in NAD+ to NADH ratio followed by an increased propionate molar proportion at the expense of acetate molar proportion, and an increase in CH4 production that steadily decreased in time, although the magnitude of increase for CH4 emission was less than for [Formula: see text] . A global sensitivity analysis indicated that parameters that determine the fractional passage rate and NADH oxidation rate altogether explained 86% of the variation in predicted daily CH4 emission. Model evaluation indicated over-prediction of in vivo CH4 emissions shortly after feeding, whereas under-prediction was indicated at later times. The present rumen fermentation modeling effort uniquely provides the integration of the [Formula: see text] controlled NAD+ to NADH ratio for dynamically predicting metabolic pathways that yield VFA, H2 and CH4.


Asunto(s)
Ácidos Grasos Volátiles/biosíntesis , Hidrógeno/metabolismo , Metano/biosíntesis , Modelos Biológicos , Rumen/metabolismo , Animales , Teorema de Bayes , Bovinos , Ritmo Circadiano/fisiología , Fermentación , Cinética , Termodinámica , Incertidumbre
19.
J Dairy Sci ; 102(7): 6109-6130, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31079901

RESUMEN

The digestive physiology of ruminants is sufficiently different (e.g., with respect to mean retention time of digesta, digestibility of the feed offered, digestion, and fermentation characteristics) that caution is needed before extrapolating results from one type of ruminant to another. The objectives of the present study were (1) to provide an overview of some essential differences in rumen physiology between dairy cattle, beef cattle, and sheep that are related to methane (CH4) emission; and (2) to evaluate whether dietary strategies to mitigate CH4 emission with various modes of action are equally effective in dairy cattle, beef cattle, and sheep. A literature search was performed using Web of Science and Scopus, and 94 studies were selected from the literature. Per study, the effect size of the dietary strategies was expressed as a proportion (%) of the control level of CH4 emission, as this enabled a comparison across ruminant types. Evaluation of the literature indicated that the effectiveness of forage-related CH4 mitigation strategies, including feeding more highly digestible grass (herbage or silage) or replacing different forage types with corn silage, differs across ruminant types. These strategies are most effective for dairy cattle, are effective for beef cattle to a certain extent, but seem to have minor or no effects in sheep. In general, the effectiveness of other dietary mitigation strategies, including increased concentrate feeding and feed additives (e.g., nitrate), appeared to be similar for dairy cattle, beef cattle, and sheep. We concluded that if the mode of action of a dietary CH4 mitigation strategy is related to ruminant-specific factors, such as feed intake or rumen physiology, the effectiveness of the strategy differs across ruminant types, whereas if the mode of action is associated with methanogenesis-related fermentation pathways, the strategy is effective across ruminant types. Hence, caution is needed when translating effectiveness of dietary CH4 mitigation strategies across different ruminant types or production systems.


Asunto(s)
Bovinos/metabolismo , Dieta/veterinaria , Metano/biosíntesis , Rumen/metabolismo , Ovinos/metabolismo , Animales , Femenino , Fermentación , Masculino , Poaceae , Rumiación Digestiva , Zea mays
20.
J Dairy Sci ; 101(11): 9789-9799, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30172398

RESUMEN

Generation of ammonia from nitrate reduction is slower compared with urea hydrolysis and may be more efficiently incorporated into ruminal microbial protein. We hypothesized that nitrate supplementation could increase ammonia incorporation into microbial protein in the rumen compared with urea supplementation of a low-protein diet fed to lactating dairy cows. Eight multiparous Chinese Holstein dairy cows were used in a crossover design to investigate the effect of nitrate or an isonitrogenous urea inclusion in the basal low-protein diet on rumen fermentation, milk yield, and ruminal microbial community in dairy cows fed a low-protein diet in comparison with an isonitrogenous urea control. Eight lactating cows were blocked in 4 pairs according to days in milk, parity, and milk yield and allocated to urea (7.0 g urea/kg of dry matter of basal diet) or nitrate (14.6 g of NO3-/kg of dry matter of basal diet, supplemented as sodium nitrate) treatments, which were formulated on 75% of metabolizable protein requirements. Nitrate supplementation decreased ammonia concentration in the rumen liquids (-33.1%) and plasma (-30.6%) as well as methane emissions (-15.0%) and increased dissolved hydrogen concentration (102%), microbial N (22.8%), propionate molar percentage, milk yield, and 16S rRNA gene copies of Selenomonas ruminantium. Ruminal dissolved hydrogen was positively correlated with the molar proportion of propionate (r = 0.57), and negatively correlated with acetate-to-propionate ratio (r = -0.57) and estimated net metabolic hydrogen production relative to total VFA produced (r = -0.58). Nitrate reduction to ammonia redirected metabolic hydrogen away from methanogenesis, enhanced ammonia incorporation into rumen microbial protein, and shifted fermentation from acetate to propionate, along with increasing S. ruminantium 16S rRNA gene copies, likely leading to the increased milk yield.


Asunto(s)
Amoníaco/metabolismo , Bovinos/fisiología , Dieta con Restricción de Proteínas , Suplementos Dietéticos , Metano/metabolismo , Leche/metabolismo , Nitratos/farmacología , Alimentación Animal/análisis , Animales , Proteínas Bacterianas/metabolismo , Bovinos/microbiología , Dieta/veterinaria , Femenino , Fermentación , Proteínas Fúngicas/metabolismo , Hidrógeno/metabolismo , Lactancia , Embarazo , Proteínas Protozoarias/metabolismo , Rumen/efectos de los fármacos , Rumen/metabolismo , Urea/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...