Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Pharmacol ; 14: 1217315, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37305545

RESUMEN

The P2Y receptors are responsible for the regulation of various physiological processes including neurotransmission and inflammatory responses. These receptors are also considered as novel potential therapeutic targets for prevention and treatment of thrombosis, neurological disorders, pain, cardiac diseases and cancer. Previously, number of P2Y receptor antagonists has been investigated but they are less potent and non-selective with poor solubility profile. Herein, we present the synthesis of new class of benzimidazole derived sulfonylureas (1a-y) as potent antagonists of P2Y receptors, with the specific aim to explore selective antagonists of P2Y1 receptors. The efficacy and selectivity of the synthesized derivatives 1) against four P2Y receptors i.e., t-P2Y1, h-P2Y2, h-P2Y4, and r-P2Y6Rs was carried out by calcium mobilization assay. The results revealed that except 1b, 1d, 1l, 1m, 1o, 1u, 1v, 1w, and 1y, rest of the synthesized derivatives exhibited moderate to excellent inhibitory potential against P2Y1 receptors. Among the potent antagonists, derivative 1h depicted the maximum inhibition of P2Y1 receptor in calcium signalling assay, with an IC50 value of 0.19 ± 0.04 µM. The potential of inhibition was validated by computational investigations where bonding and non-bonding interactions between ligand and targeted receptor further strengthen the study. The best identified derivative 1h revealed the same binding mechanism as that of already reported selective antagonist of P2Y1 receptor i.e (1-(2- (2-tert-butyl-phenoxy) pyridin-3-yl)-3-4-(trifluoromethoxy) phenylurea but the newly synthesized derivative exhibited better solubility profile. Hence, this derivative can be used as lead candidate for the synthesis of more potential antagonist with much better solubility profile and medicinal importance.

2.
RSC Adv ; 12(27): 17596-17606, 2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35765454

RESUMEN

Purinergic signaling is regulated by a group of extracellular enzymes called ectonucleotidases. One of its members i.e., ecto-5'-nucleotidase (h-e5'NT) is involved in the final step of the enzymatic hydrolysis cascade that is the conversion of adenosine monophosphate (AMP) to adenosine and therefore, involves the regulation of adenosine level in extracellular space. The overexpression of h-e5'NT has been observed in various pathological conditions such as hypoxia, inflammation and cancers, and led to various complications. Hence, the identification of a potent as well as selective inhibitor of h-e5'NT is of greater importance in therapeutic treatment of various diseases. Azomethine-thioxoimidazolidinone derivatives were studied for their inhibition potential against e5'NT enzyme along with cytotoxic potential against cancer cell lines possessing overexpression of e5'NT enzyme. The derivative (E)-3-((4-((3-methoxybenzyl)oxy)benzylidene)amino)-2-thioxoimidazolidin-4-one (4g) displayed selective and significant inhibition towards h-e5'NT with an IC50 value of 0.23 ± 0.08 µM. While two other derivatives i.e., (E)-3-(((5-bromothiophen-2-yl)methylene)amino)-2-thioxoimidazolidin-4-one (4b) and 2-thioxo-3-((3,4,5-trimethoxybenzylidene)amino)imidazolidin-4-one (4e), exhibited non-selective potent inhibitory behavior against both human and rat enzymes. Moreover, these derivatives (4b, 4e and 4g) were further investigated for their effect on the expression of h-e5'NT using quantitative real time polymerase chain reaction. Additionally, molecular docking and DFT studies were also performed to determine the putative binding mode of potent inhibitors within the enzyme active site. HOMO, LUMO, ΔE, and molecular electrostatic potential maps were computed by DFT and the charge transfer regions within the molecules were identified to find out the regions for electrophilic and nucleophilic attack.

3.
Expert Opin Ther Pat ; 32(7): 743-751, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35333684

RESUMEN

INTRODUCTION: Ectobucleotidases are a broad class of extracellular nucleotide and nucleoside hydrolyzing enzymes. Since they play a crucial role in mediating purinergic cell signalling, they are promising therapeutic targets for treatment of a range of disorders, including fibrosis, tumor metastasis, inflammation, multiple sclerosis, and autoimmune diseases. Hence selective inhibtors of ectonulceotidases are of great interest for therapeutic intervention. AREA COVERED: Many compounds have demonstrated promising inhibitory potential against ecto-nucleotide pyrophosphatase/phosphodiesterases (NPPs). The chemistry and clinical applications of NPP inhibitors patented between 2015 and 2020 are discussed in this review. EXPERT OPINION: In recent years, there has been a lot of effort towards finding effective and selective inhibitors of NPPs. Even though a number of inhibitors are known, only a few in vivo investigations have been published. In addition to IOA-289, which has passed Phase Ia clinical trials, potent NPP2/ATX inhibitor compounds such as BLD-0409, IPF and BBT-877 have been placed in phase I clinical studies. Some of the most promising NPP2/ATX inhibitors in recent years are closely related analogs of previously known inhibitors, such as PF-8380. Knowledge of the structure activity relationship of such promising inhibitors can potentially translate into the discovery of more potent and effective inhibitors of NPP.


Asunto(s)
Patentes como Asunto , Hidrolasas Diéster Fosfóricas , Humanos , Hidrolasas Diéster Fosfóricas/metabolismo , Pirofosfatasas/metabolismo , Relación Estructura-Actividad
4.
Bioorg Chem ; 116: 105378, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34601296

RESUMEN

G-protein-coupled receptors for extracellular nucleotides are known as P2Y receptors and are made up of eight members that are encoded by distinct genes and can be classified into two classes based on their affinity for specific G-proteins. P2Y receptor modulators have been studied extensively, but only a few small-molecule P2Y receptor antagonists have been discovered so far and approved by drug agencies. Derivatives of indole carboxamide have been identified as P2Y12 and P2X7 antagonist, as a result, we developed and tested a series of indole derivatives4a-lhaving thiourea moiety as P2Y receptor antagonist by using a fluorescence-based assay to measure the inhibition of intracellular calcium release in 1321N1 astrocytoma cells that had been stably transfected with the P2Y1, P2Y2, P2Y4 and P2Y6 receptors. Most of the compounds exhibited moderate to excellent inhibition activity against P2Y1 receptor subtype. The series most potent compound, 4h exhibited an IC50 value of 0.36 ± 0.01 µM selectivity against other subtypes of P2Y receptor. To investigate the ligand-receptor interactions, the molecular docking studies were carried out. Compound 4h is the most potent P2Y1 receptor antagonist due to interaction with an important amino acid residue Pro105, in addition to Ile108, Phe119, and Leu102.


Asunto(s)
Indometacina/farmacología , Antagonistas Purinérgicos/farmacología , Receptores Purinérgicos/metabolismo , Tiourea/farmacología , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Humanos , Indometacina/síntesis química , Indometacina/química , Estructura Molecular , Antagonistas Purinérgicos/síntesis química , Antagonistas Purinérgicos/química , Relación Estructura-Actividad , Tiourea/química
5.
Med Chem ; 17(8): 866-874, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32981507

RESUMEN

AIMS: The present study was conducted to examine the inhibitory effects of synthesized sulfonylhydrazones on the expression of CD73 (ecto-5'-NT). BACKGROUND: CD73 (ecto-5'-NT) represents the most significant class of ecto-nucleotidases, which are mainly responsible for the dephosphorylation of adenosine monophosphate to adenosine. Inhibition of CD73 played an important role in the treatment of cancer, autoimmune disorders, precancerous syndromes, and some other diseases associated with CD73 activity. OBJECTIVE: Keeping in view the significance of CD73 inhibitor in the treatment of cervical cancer, a series of sulfonylhydrazones (3a-3i) derivatives synthesized from 3-formylchromones were evaluated. METHODS: All sulfonylhydrazones (3a-3i) were evaluated for their inhibitory activity towards CD73 (ecto-5'-NT) by the malachite green assay and their cytotoxic effect was investigated on the HeLa cell line using MTT assay. Secondly, the most potent compound was selected for cell apoptosis, immunofluorescence staining, and cell cycle analysis. After that, CD73 mRNA and protein expression were analyzed by real-time PCR and Western blot. RESULTS: Among all compounds, 3h, 3e, 3b, and 3c were found to be the most active against rat-ecto- 5'-NT (CD73) enzyme with IC50 (µM) values of 0.70 ± 0.06 µM, 0.87 ± 0.05 µM, 0.39 ± 0.02 µM, and 0.33 ± 0.03 µM, respectively. These derivatives were further evaluated for their cytotoxic potential against cancer cell line (HeLa). Compounds 3h and 3c showed the cytotoxicity at IC50 value of 30.20 ± 3.11 µM and 86.02 ± 7.11 µM, respectively. Furthermore, compound 3h was selected for cell apoptosis, immunofluorescence staining, and cell cycle analysis, which showed a promising apoptotic effect in HeLa cells. Additionally, compound 3h was further investigated for its effect on the expression of CD73 using qRT-PCR and western blot. CONCLUSION: Among all synthesized compounds (3a-3i), Compound 3h (E)-N'-((6-ethyl-4-oxo-4Hchromen- 3-yl) methylene)-4-methylbenzenesulfonohydrazide was identified as the most potent compound. Additional expression studies conducted on the HeLa cell line proved that this compound successfully decreased the expression level of CD73 and thus, inhibited the growth and proliferation of cancer cells.


Asunto(s)
5'-Nucleotidasa/metabolismo , Antineoplásicos/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias del Cuello Uterino/patología , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Células HeLa , Humanos
6.
Curr Med Chem ; 28(22): 4484-4498, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33109027

RESUMEN

BACKGROUND: The 2019 novel coronavirus (2019-nCoV), also known as coronavirus 2 (SARS-CoV-2) acute respiratory syndrome has recently emerged and continued to spread rapidly with high mortality and morbidity rates. Currently, no efficacious therapy is available to relieve coronavirus infections. As new drug design and development takes time, there is a possibility offindingan effective treatment from existing antiviral agents. OBJECTIVE: The aim of this study is to find out the relationship between thepossible drug targets and themechanism of action of antiviral drugs. This review discusses the efforts indevelopingdrug from known or new molecules. METHODS: Viruses usually have two structural integrities, proteins and nucleic acids, both of which can be possible drug targets. Herein, we systemically discuss the structural-functional relationships of the spike, 3-chymotrypsin-like protease (3CLpro), papain like protease (PLpro) and RNA-dependent RNA polymerase (RdRp), as these are prominent structural features of thecoronavirus. Certain antiviral drugs such as Remdesivir are RNA-dependent RNA polymerase inhibitorswiththe ability to terminate RNA replication by inhibiting ATP. RESULTS: It is reported that ATP is involved in synthesis of coronavirus non-structural proteins from 3CLpro and PLpro. Similarly, mechanisms of action of many other antiviral agents havebeen discussed in this review. It will provide new insights into the mechanism of inhibition, and let us develop new therapeutic antiviral approaches against novel SARS-CoV-2 coronavirus. CONCLUSION: In conclusion, this review summarizes recent progress in developing protease inhibitors for SARS-CoV-2.


Asunto(s)
COVID-19 , SARS-CoV-2 , Antivirales/farmacología , Antivirales/uso terapéutico , Diseño de Fármacos , Humanos , Péptido Hidrolasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...