Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Pharmacol ; 13: 855743, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35517827

RESUMEN

Motivation: The complement pathway plays a critical role in innate immune defense against infections. Dysregulation between activation and regulation of the complement pathway is widely known to contribute to several diseases. Nevertheless, very few drugs that target complement proteins have made it to the final regulatory approval because of factors such as high concentrations and dosing requirements for complement proteins and serious side effects from complement inhibition. Methods: A quantitative systems pharmacology (QSP) model of the complement pathway has been developed to evaluate potential drug targets to inhibit complement activation in autoimmune diseases. The model describes complement activation via the alternative and terminal pathways as well as the dynamics of several regulatory proteins. The QSP model has been used to evaluate the effect of inhibiting complement targets on reducing pathway activation caused by deficiency in factor H and CD59. The model also informed the feasibility of developing small-molecule or large-molecule antibody drugs by predicting the drug dosing and affinity requirements for potential complement targets. Results: Inhibition of several complement proteins was predicted to lead to a significant reduction in complement activation and cell lysis. The complement proteins that are present in very high concentrations or have high turnover rates (C3, factor B, factor D, and C6) were predicted to be challenging to engage with feasible doses of large-molecule antibody compounds (≤20 mg/kg). Alternatively, complement fragments that have a short half-life (C3b, C3bB, and C3bBb) were predicted to be challenging or infeasible to engage with small-molecule compounds because of high drug affinity requirements (>1 nM) for the inhibition of downstream processes. The drug affinity requirements for disease severity reduction were predicted to differ more than one to two orders of magnitude than affinities needed for the conventional 90% target engagement (TE) for several proteins. Thus, the QSP model analyses indicate the importance for accounting for TE requirements for achieving reduction in disease severity endpoints during the lead optimization stage.

3.
Bull Math Biol ; 82(2): 33, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-32062771

RESUMEN

The complement system (CS) is an integral part of innate immunity and can be activated via three different pathways. The alternative pathway (AP) has a central role in the function of the CS. The AP of complement system is implicated in several human disease pathologies. In the absence of triggers, the AP exists in a time-invariant resting state (physiological steady state). It is capable of rapid, potent and transient activation response upon challenge with a trigger. Previous models of AP have focused on the activation response. In order to understand the molecular machinery necessary for AP activation and regulation of a physiological steady state, we built parsimonious AP models using experimentally supported kinetic parameters. The models further allowed us to test quantitative roles played by negative and positive regulators of the pathway in order to test hypotheses regarding their mechanisms of action, thus providing more insight into the complex regulation of AP.


Asunto(s)
Vía Alternativa del Complemento , Modelos Inmunológicos , Complemento C3b/inmunología , Factor B del Complemento/inmunología , Factor H de Complemento/inmunología , Simulación por Computador , Humanos , Inmunidad Innata , Cinética , Conceptos Matemáticos , Properdina/inmunología
4.
CPT Pharmacometrics Syst Pharmacol ; 8(11): 777-791, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31535440

RESUMEN

Quantitative systems pharmacology (QSP) approaches have been increasingly applied in the pharmaceutical since the landmark white paper published in 2011 by a National Institutes of Health working group brought attention to the discipline. In this perspective, we discuss QSP in the context of other modeling approaches and highlight the impact of QSP across various stages of drug development and therapeutic areas. We discuss challenges to the field as well as future opportunities.


Asunto(s)
Descubrimiento de Drogas/métodos , Biología de Sistemas/métodos , Humanos , Modelos Biológicos , Proyectos de Investigación
5.
CPT Pharmacometrics Syst Pharmacol ; 7(3): 135-146, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29349875

RESUMEN

A cross-industry survey was conducted to assess the landscape of preclinical quantitative systems pharmacology (QSP) modeling within pharmaceutical companies. This article presents the survey results, which provide insights on the current state of preclinical QSP modeling in addition to future opportunities. Our results call attention to the need for an aligned definition and consistent terminology around QSP, yet highlight the broad applicability and benefits preclinical QSP modeling is currently delivering.


Asunto(s)
Descubrimiento de Drogas/métodos , Evaluación Preclínica de Medicamentos/normas , Farmacología Clínica/métodos , Diseño de Fármacos , Descubrimiento de Drogas/normas , Industria Farmacéutica , Humanos , Modelos Biológicos , Farmacología Clínica/normas , Encuestas y Cuestionarios
6.
Acta Biomater ; 8(11): 3974-81, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22796654

RESUMEN

Tissue engineering strategies based on multipotent stem cells (MSCs) hold significant promise for the repair or replacement of damaged smooth muscle tissue. To design scaffolds which specifically induce MSC smooth muscle lineage progression requires a deeper understanding of the relative influence of various microenvironmental signals on myogenesis. For instance, MSC myogenic differentiation has been shown to be promoted by increases in active RhoA and FAK, both of which can be induced via increased cell-substrate stress. Separate studies have demonstrated MSC myogenesis to be enhanced by uniaxial cell alignment. The goal of the present study was to compare the impact of increased peak cell-substrate stresses vs. increased uniaxial cell alignment on MSC myogenic differentiation. To this end, MSC fate decisions were compared within two distinct multicellular "forms". A "stripe" multicellular pattern was designed to induce uniaxial cell alignment. In contrast, a second multicellular pattern was designed with "loops" or curves, which altered cell directionality while simultaneously generating regional peak stresses significantly above that intrinsic to the "stripe" form. As anticipated, the higher peak stress levels of the "loop" pattern were associated with increased fractions of active RhoA and active FAK. In contrast, two markers of early smooth muscle lineage progression, myocardin and SM-α-actin, were significantly elevated in the "stripe" pattern relative to the "loop" pattern. These results indicate that scaffolds which promote uniaxial MSC alignment may be more inductive of myogenic differentiation than those associated with increased peak, cell-substrate stress but in which cell directionality varies.


Asunto(s)
Células Madre Multipotentes/citología , Células Madre Multipotentes/metabolismo , Desarrollo de Músculos , Estrés Mecánico , Actinas/genética , Actinas/metabolismo , Animales , Biomarcadores/metabolismo , Cadherinas/metabolismo , Linaje de la Célula , Módulo de Elasticidad , Ensayo de Inmunoadsorción Enzimática , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Regulación de la Expresión Génica , Proteínas Hedgehog/metabolismo , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Ratones , Células Madre Multipotentes/enzimología , Células 3T3 NIH , Factores de Transcripción/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...