Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(14)2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39065458

RESUMEN

Galanthamine is an immensely valuable alkaloid exhibiting anti-cancer and antiviral activity. The cultivation of plant tissues in in vitro conditions is a good source for the synthesis and enrichment of secondary metabolites of commercial interest. In this study, the Amaryllidaceae alkaloid galanthamine was quantified in three Zephyranthes species, such as Zephyranthes candida, Zephyranthes grandiflora, and Zephyranthes citrina, and the impact of the methyl jasmonate (MJ) signaling molecule on galanthamine accumulation was monitored in in vitro-derived plant tissues. This is the first ever study of the MJ-regulated accumulation of galanthamine in in vitro-grown Zephyranthes tissues. Shoot regeneration was obtained in all three Zephyranthes species on Murashige and Skoog (MS) medium containing 2.0 mgL-1 benzylaminopurine (BAP) + 0.5 mgL-1 naphthalene acetic acid (NAA). The regenerated shoots were rooted on a medium containing 2.0 mgL-1 indole butyric acid (IBA). A GC-MS study of Zephyranthes extracts revealed the presence of 34 phyto-compounds of varied levels with therapeutic activities against diseases. The galanthamine content was quantified in plant parts of the three Zephyranthes species using high-performance thin layer chromatography (HPTLC); the maximum was found in Z. candida bulb (2.41 µg g-1 dry wt.), followed by Z. grandiflora (2.13 µg g-1 dry wt.), and then Z. citrina (2.02 µg g-1 dry wt.). The galanthamine content showed bulb > leaf > root source order. The in vitro-generated plantlets were treated with different MJ concentrations, and the galanthamine yield was measured in bulb, leaf, and root tissues. The highest galanthamine content was recorded in bulbs of Z. candida (3.97 µg g-1 dry wt.) treated with 150 µM MJ, showing an increase of 64.73% compared to the control. This accumulation may be attributed to MJ-induced stress, highlighting the potential commercial synthesis of galanthamine in vitro.

2.
Int J Mol Sci ; 25(12)2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38928062

RESUMEN

Astrocyte dysfunctions have been consistently observed in patients affected with depression and other psychiatric illnesses. Although over the years our understanding of these changes, their origin, and their consequences on behavior and neuronal function has deepened, many aspects of the role of astroglial dysfunction in major depressive disorder (MDD) and post-traumatic stress disorder (PTSD) remain unknown. In this review, we summarize the known astroglial dysfunctions associated with MDD and PTSD, highlight the impact of chronic stress on specific astroglial functions, and how astroglial dysfunctions are implicated in the expression of depressive- and anxiety-like behaviors, focusing on behavioral consequences of astroglial manipulation on emotion-related and fear-learning behaviors. We also offer a glance at potential astroglial functions that can be targeted for potential antidepressant treatment.


Asunto(s)
Astrocitos , Modelos Animales de Enfermedad , Trastornos del Humor , Trastornos por Estrés Postraumático , Animales , Astrocitos/metabolismo , Humanos , Trastornos por Estrés Postraumático/terapia , Trastornos por Estrés Postraumático/tratamiento farmacológico , Trastornos por Estrés Postraumático/metabolismo , Trastornos por Estrés Postraumático/psicología , Trastornos del Humor/etiología , Trastorno Depresivo Mayor/tratamiento farmacológico , Trastorno Depresivo Mayor/metabolismo , Estrés Psicológico , Roedores
3.
Biochem Pharmacol ; 222: 116074, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38395265

RESUMEN

Olanzapine, a widely prescribed atypical antipsychotic, poses a great risk to the patient's health by fabricating a plethora of severe metabolic and cardiovascular adverse effects eventually reducing life expectancy and patient compliance. Its heterogenous receptor binding profile has made it difficult to point out a specific cause or treatment for the related side effects. Growing body of evidence suggest that transient receptor potential (TRP) channel subfamily Ankyrin 1 (TRPA1) has pivotal role in pathogenesis of type 2 diabetes and obesity. With this background, we aimed to investigate the role of pharmacological manipulations of TRPA1 channels in antipsychotic (olanzapine)-induced metabolic alterations in female mice using allyl isothiocyanate (AITC) and HC-030031 (TRPA1 agonist and antagonist, respectively). It was found that after 6 weeks of treatment, AITC prevented olanzapine-induced alterations in body weight and adiposity; serum, and liver inflammatory markers; glucose and lipid metabolism; and hypothalamic appetite regulation, nutrient sensing, inflammatory and TRPA1 channel signaling regulating genes. Furthermore, several of these effects were absent in the presence of HC-030031 (TRPA1 antagonist) indicating protective role of TRPA1 agonism in attenuating olanzapine-induced metabolic alterations. Supplementary in-depth studies are required to study TRPA1 channel effect on other aspects of olanzapine-induced metabolic alterations.


Asunto(s)
Acetanilidas , Antipsicóticos , Diabetes Mellitus Tipo 2 , Purinas , Canales de Potencial de Receptor Transitorio , Ratones , Humanos , Femenino , Animales , Canal Catiónico TRPA1 , Olanzapina , Antipsicóticos/toxicidad , Isotiocianatos/farmacología , Obesidad/inducido químicamente , Obesidad/tratamiento farmacológico , Hígado/metabolismo
5.
Plants (Basel) ; 12(11)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37299166

RESUMEN

Catharanthus roseus L. (G.) Don is the most widely studied plant because of its high pharmacological value. In vitro culture uses various plant parts such as leaves, nodes, internodes and roots for inducing callus and subsequent plant regeneration in C. roseus. However, till now, little work has been conducted on anther tissue using plant tissue culture techniques. Therefore, the aim of this work is to establish a protocol for in vitro induction of callus by utilizing anthers as explants in MS (Murashige and Skoog) medium fortified with different concentrations and combinations of PGRs. The best callusing medium contains high α-naphthalene acetic acid (NAA) and low kinetin (Kn) concentrations showing a callusing frequency of 86.6%. SEM-EDX analysis was carried out to compare the elemental distribution on the surfaces of anther and anther-derived calli, and the two were noted to be nearly identical in their elemental composition. Gas chromatography-mass spectrometry (GC-MS) analysis of methanol extracts of anther and anther-derived calli was conducted, which revealed the presence of a wide range of phytocompounds. Some of them are ajmalicine, vindolinine, coronaridine, squalene, pleiocarpamine, stigmasterol, etc. More importantly, about 17 compounds are exclusively present in anther-derived callus (not in anther) of Catharanthus. The ploidy status of anther-derived callus was examined via flow cytometry (FCM), and it was estimated to be 0.76 pg, showing the haploid nature of callus. The present work therefore represents an efficient way to produce high-value medicinal compounds from anther callus in a lesser period of time on a larger scale.

6.
Complex Psychiatry ; 9(1-4): 57-69, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37101541

RESUMEN

Introduction: Chronic stress-related illnesses such as major depressive disorder and post-traumatic stress disorder share symptomatology, including anxiety, anhedonia, and helplessness. Across disorders, neurotoxic dysregulated glutamate (Glu) signaling may underlie symptom emergence. Current first-line antidepressant drugs, which do not directly target Glu signaling, fail to provide adequate benefit for many patients and are associated with high relapse rates. Riluzole modulates glutamatergic neurotransmission by increasing metabolic cycling and modulating signal transduction. Clinical studies exploring riluzole's efficacy in stress-related disorders have provided varied results. However, the utility of riluzole for treating specific symptom dimensions or as a prophylactic treatment has not been comprehensively assessed. Methods: We investigated whether chronic prophylactic riluzole (∼12-15 mg/kg/day p.o.) could prevent the emergence of behavioral deficits induced by unpredictable chronic mild stress (UCMS) in mice. We assessed (i) anxiety-like behavior using the elevated-plus maze, open-field test, and novelty-suppressed feeding, (ii) mixed anxiety/anhedonia-like behavior in the novelty-induced hypophagia test, and (iii) anhedonia-like behavior using the sucrose consumption test. Z-scoring summarized changes across tests measuring similar dimensions. In a separate learned helplessness (LH) cohort, we investigated whether chronic prophylactic riluzole treatment could block the development of helplessness-like behavior. Results: UCMS induced an elevation in anhedonia-like behavior and overall behavioral emotionality that was blocked by prophylactic riluzole. In the LH cohort, prophylactic riluzole blocked the development of helplessness-like behavior. Discussion/Conclusion: This study supports the utility of riluzole as a prophylactic medication for preventing anhedonia and helplessness symptoms associated with stress-related disorders.

7.
J Appl Genet ; 64(1): 1-21, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36175751

RESUMEN

Pluchea lanceolata is a threatened pharmacologically important plant from the family Asteraceae. It is a source of immunologically active compounds; large-scale propagation may offer compounds with medicinal benefits. Traditional propagation method is ineffective as the seeds are not viable; and root sprout propagation is a slow process and produces less numbers of plants. Plant tissue culture technique is an alternative, efficient method for increasing mass propagation and it also facilitate genetic improvement. The present study investigated a three-way regeneration system in P. lanceolata using indirect shoot regeneration (ISR), direct shoot regeneration (DSR), and somatic embryo mediated regeneration (SER). Aseptic leaf and nodal explants were inoculated on Murashige and Skoog (MS) medium amended with plant growth regulators (PGRs), 2,4-dichlorophenoxy acetic acid (2,4-D), 1-naphthalene acetic acid (NAA), and 6-benzyl amino purine (BAP) either singly or in combinations. Compact, yellowish green callus was obtained from leaf explants in 1.0 mg/l BAP (89.10%) added medium; ISR percentage was high, i.e., 69.33% in 2.0 mg/l BAP + 0.5 mg/l NAA enriched MS with 4.02 mean number of shoots per callus mass. Highest DSR frequency (67.15%) with an average of 5.62 shoot numbers per explant was noted in 0.5 mg/l BAP added MS medium. Somatic embryos were produced in 1.0 mg/l NAA fortified medium with 4.1 mean numbers of somatic embryos per culture. On BAP (1.0 mg/l) + 0.5 mg/l gibberellic acid (GA3) amended medium, improved somatic embryo germination frequency (68.14%) was noted showing 12.18 mean numbers of shoots per culture. Histological and scanning electron microscopic (SEM) observation revealed different stages of embryos, confirming somatic embryogenesis in P. lanceolata. Best rooting frequency (83.95%) of in vitro raised shootlets was obtained in 1.0 mg/l IBA supplemented half MS medium with a maximum of 7.83 roots per shoot. The regenerated plantlets were transferred to the field with 87% survival rate. The 2C genome size of ISR, DSR, and SER plants was measured and noted to be 2.24, 2.25, and 2.22 pg respectively, which are similar to field-grown mother plant (2C = 2.26 pg). Oxidative and physiological events suggested upregulation of enzymatic activities in tissue culture regenerated plants compared to mother plants, so were photosynthetic pigments. Implementation of gas chromatography-mass spectrometry (GC-MS) technique on in vivo and in vitro raised plants revealed the presence of diverse phyto-chemicals. The yields of alpha amyrin and lupeol (medicinally important triterpenoids) were quantified using high-performance thin-layer chromatography (HPTLC) method and enhanced level of alpha amyrin (2.129 µg g-1 dry wt) and lupeol (1.232 µg g-1 dry wt) was noted in in vitro grown leaf tissues, suggesting in vitro conditions act as a potential trigger for augmenting secondary metabolite synthesis. The present protocol represents a reliable mass propagation technique in producing true-to-type plants of P. lanceolata, conserving 2C DNA and ploidy successfully without affecting genetic homogeneity.


Asunto(s)
Asteraceae , Regeneración , Cromatografía de Gases y Espectrometría de Masas , Tamaño del Genoma , Brotes de la Planta/genética , Regeneración/genética , Asteraceae/genética
8.
Plants (Basel) ; 13(1)2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38202430

RESUMEN

Tylophora indica (Burm. f.) Merrill is an endangered medicinal plant that possesses various active agents, such as tylophorinine, kaempferol, quercetin, α-amyrin and beta-sitosterol, with multiple medicinal benefits. α-amyrin, a triterpenoid, is widely known for its antimicrobial, anti-inflammatory, gastroprotective and hepatoprotective properties. In this study, we investigated the metabolite profiling of tissues and the effects of cadmium chloride and chitosan on in vitro accumulation of alkaloids in T. indica. First, the callus was induced from the leaf in 2,4-D-, NAA- and/or BAP-fortified MS medium. Subsequent shoot formation through organogenesis and in vitro roots was later induced. Gas chromatography-mass spectrometry (GC-MS)-based phytochemical profiling of methanolic extracts of in vivo and in vitro regenerated plants was conducted, revealing the presence of the important phytocompounds α-amyrin, lupeol, beta-sitosterol, septicine, tocopherol and several others. Different in vitro grown tissues, like callus, leaf and root, were elicited with cadmium chloride (0.1-0.4 mg L-1) and chitosan (1-50 mg L-1) to evaluate the effect of elicitation on α-amyrin accumulation, measured with high-performance thin layer chromatography (HPTLC). CdCl2 and chitosan showed improved sugar (17.24 and 15.04 mg g-1 FW, respectively), protein (10.76 and 9.99 mg g-1 FW, respectively) and proline (7.46 and 7.12 mg g-1 FW), especially at T3 (0.3 and 25 mg L-1), in the leaf as compared to those of the control and other tissues. The antioxidant enzyme activities were also evaluated under an elicitated stress situation, wherein catalase (CAT), superoxide dismutase (SOD) and ascorbate peroxidase (APX) displayed the highest activities in the leaf at T4 of both of the two elicitors. The α-amyrin yield was quantified with HPTLC in all tested tissues (leaf, callus and root) and had an Rf = 0.62 at 510 nm wavelength. Among all the concentrations tested, the T3 treatment (0.3 mg L-1 of cadmium chloride and 25 mg L-1 of chitosan) had the best influence on accumulation, irrespective of the tissues, with the maximum being in the leaf (2.72 and 2.64 µg g-1 DW, respectively), followed by the callus and root. Therefore, these results suggest future opportunities of elicitors in scaling up the production of important secondary metabolites to meet the requirements of the pharmaceutical industry.

9.
Genes (Basel) ; 13(12)2022 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-36553602

RESUMEN

Digitalis purpurea L. is a therapeutically important plant that synthesizes important cardiotonics such as digitoxin and digoxin. The present work reports a detailed and efficient propagation protocol for D. purpurea by optimizing various PGR concentrations in Murashige and Skoog (MS) medium. The genetic homogeneity of in vitro regenerants was assessed by the flow cytometric method (FCM) and Start Codon Targeted (SCoT) marker technique. Firstly, the seeds inoculated in full MS medium added with 0.5 mg/L GA3 produced seedlings. Different parts such as hypocotyl, nodes, leaves and apical shoots were used as explants. The compact calli were obtained on BAP alone or in combinations with 2, 4-D/NAA. The hypocotyl-derived callus induced somatic embryos which proliferated and germinated best in 0.75 mg/L BAP-fortified MS medium. Scanning electron microscopic (SEM) images confirmed the presence of various developmental stages of somatic embryos. Shoot regeneration was obtained in which BAP at 1.0 mg/L and 2.0 mg/L BAP + 0.5 mg/L 2,4-D proved to be the best treatments of PGRs in inducing direct and indirect shoot buds. The regenerated shoots showed the highest rooting percentage (87.5%) with 24.7 ± 1.9 numbers of roots/shoot in 1.0 mg/L IBA augmented medium. The rooted plantlets were acclimatized in a greenhouse at a survival rate of 85-90%. The genome size and the 2C nuclear DNA content of field-grown, somatic embryo-regenerated and organogenic-derived plants were estimated and noted to be 3.1, 3.2 and 3.0 picogram (pg), respectively; there is no alteration in ploidy status and the DNA content, validating genetic uniformity. Six SCoT primers unveiled 94.3%-95.13% monomorphic bands across all the plant samples analyzed, further indicating genetic stability among in vitro clones and mother plants. This study describes for the first time successful induction of somatic embryos from hypocotyl callus; and flow cytometry and SCoT marker confirmed the genetic homogeneity of regenerated plants.


Asunto(s)
Digitalis , Digitalis/genética , Codón Iniciador/genética , Regeneración/genética , ADN , Ploidias
10.
Methods Mol Biol ; 2527: 11-27, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35951180

RESUMEN

Somatic or in vitro embryogenesis is a unique embryo producing process from vegetative cells observed in plants since 1958. Even over 60 years of research, the transition of somatic cells into embryonic fate is still not elucidated fully. Various networks and signaling elements have been noted to play important role in this "vegetative to reproductive" transition process. The networks include genotypes, explant types, the sugar/carbohydrate sources, cultural/environmental conditions like light quality and intensity, dissolved oxygen (DO) level, cell density, plant growth regulator (PGR) (auxin and cytokinin) signaling, PGR-gene interplay, stresses are important and cause new cellular reprogramming during embryonic acquisition. A wide array of genes, specific to zygotic embryogenesis, also express during somatic embryogenesis. A few embryogenesis-specific genes such as SOMATIC EMBRYOGENESIS LIKE RECEPTOR KINASE, LEAFY COTYLEDON, AGAMOUS-LIKE 15, and BABY BOOM are crucial and have been discussed. The chapter focuses the importance of these gene products, e.g., proteins, enzymes, and transcription factors in regulating embryogenesis. Many of these encoded proteins act as potential somatic embryogenesis markers. Besides, important elements such as genotype, herbaceous/woody plants' response in culture in inducing embryos have been discussed. All these elements are connected and form network in complex fashion thus difficult to unfold fully; some of the current progress and developments have been presented in this chapter.


Asunto(s)
Catharanthus , Plantas Medicinales , Catharanthus/genética , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/farmacología , Técnicas de Embriogénesis Somática de Plantas , Plantas Medicinales/genética
11.
Neuropharmacology ; 215: 109169, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35753430

RESUMEN

Kynurenine pathway, a neuroimmunological pathway plays a substantial role in depression. Consistently, increased levels of neurotoxic metabolite of kynurenine pathway; quinolinic acid (QA) found in the suicidal patients and remitted major depressive patients. QA, an endogenous modulator of N-methyl-d-aspartate receptor is produced by microglial cells, may serve as a potential candidate for a link between antioxidant defence system and immune changes in depression. Further, nuclear factor (erythroid-derived 2) like 2 (Nrf2), an endogenous antioxidant transcription factor plays a significant role in maintaining antioxidant homeostasis during basal and stress conditions. The present study was designed to explore the effects of KMO-inhibition (Kynurenine monooxygenase) and association of reduced QA on Keap1/Nrf2/ARE pathway activity in olfactory bulbectomized mice (OBX-mice). KMO catalysis the neurotoxic branch of kynurenine pathway directing the synthesis of QA. KMO inhibitionshowed significant reversal of depressive-like behaviour, restored Keap-1 and Nrf2 mRNA expression, and associated antioxidant levels in cortex and hippocampus of OBX-mice. KMO inhibition also increased PI3K/AKT mRNA expression in OBX-mice. KMO inhibition and associated reduced QA significantly decreased inflammatory markers, kynurenine and increased the 5-HT, 5-HIAA and tryptophan levels in OBX-mice. Furthermore, molecular docking studies has shown good binding affinity of QA towards ubiquitin proteasome complex and PI3K protein involved in Keap-1 dependent and independent proteasome degradation of Nrf2 respectively supporting our in-vivo findings. Hence, QA might act as pro-oxidant through downregulating Nrf2/ARE pathway along with modulating other pathways and KMO inhibition could be a potential therapeutic target for depression treatment.


Asunto(s)
Trastorno Depresivo Mayor , Ácido Quinolínico , Animales , Antioxidantes , Depresión/tratamiento farmacológico , Modelos Animales de Enfermedad , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Quinurenina/metabolismo , Quinurenina 3-Monooxigenasa/metabolismo , Ratones , Simulación del Acoplamiento Molecular , Factor 2 Relacionado con NF-E2/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ácido Quinolínico/metabolismo , ARN Mensajero
12.
Front Endocrinol (Lausanne) ; 12: 771575, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34912298

RESUMEN

Neuropsychiatric disorders (NPDs) are a huge burden to the patient, their family, and society. NPDs have been greatly associated with cardio-metabolic comorbidities such as obesity, type-2 diabetes mellitus, dysglycaemia, insulin resistance, dyslipidemia, atherosclerosis, and other cardiovascular disorders. Antipsychotics, which are frontline drugs in the treatment of schizophrenia and off-label use in other NPDs, also add to this burden by causing severe metabolic perturbations. Despite decades of research, the mechanism deciphering the link between neuropsychiatric and metabolic disorders is still unclear. In recent years, transient receptor potential Ankyrin 1 (TRPA1) channel has emerged as a potential therapeutic target for modulators. TRPA1 agonists/antagonists have shown efficacy in both neuropsychiatric disorders and appetite regulation and thus provide a crucial link between both. TRPA1 channels are activated by compounds such as cinnamaldehyde, allyl isothiocyanate, allicin and methyl syringate, which are present naturally in food items such as cinnamon, wasabi, mustard, garlic, etc. As these are present in many daily food items, it could also improve patient compliance and reduce the patients' monetary burden. In this review, we have tried to present evidence of the possible involvement of TRPA1 channels in neuropsychiatric and metabolic disorders and a possible hint towards using TRPA1 modulators to target appetite, lipid metabolism, glucose and insulin homeostasis and inflammation associated with NPDs.


Asunto(s)
Encefalopatías Metabólicas/metabolismo , Trastornos Mentales/metabolismo , Canal Catiónico TRPA1/metabolismo , Encefalopatías Metabólicas/complicaciones , Humanos , Trastornos Mentales/complicaciones
13.
Int J Neuropsychopharmacol ; 24(10): 842-853, 2021 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-34346493

RESUMEN

BACKGROUND: Neuromorphological changes are consistently reported in the prefrontal cortex of patients with stress-related disorders and in rodent stress models, but the effects of stress on astrocyte morphology and the potential link to behavioral deficits are relatively unknown. METHODS: To answer these questions, transgenic mice expressing green fluorescent protein (GFP) under the glial fibrillary acid protein (GFAP) promotor were subjected to 7, 21, or 35 days of chronic restraint stress (CRS). CRS-induced behavioral effects on anhedonia- and anxiety-like behaviors were measured using the sucrose intake and the PhenoTyper tests, respectively. Prefrontal cortex GFP+ or GFAP+ cell morphology was assessed using Sholl analysis, and associations with behavior were determined using correlation analysis. RESULTS: CRS-exposed male and female mice displayed anxiety-like behavior at 7, 21, and 35 days and anhedonia-like behavior at 35 days. Analysis of GFAP+ cell morphology revealed significant atrophy of distal processes following 21 and 35 days of CRS. CRS induced similar decreases in intersections at distal radii for GFP+ cells accompanied by increased proximal processes. In males, the number of intersections at the most distal radius step significantly correlated with anhedonia-like behavior (r = 0.622, P < .05) for GFP+ cells and with behavioral emotionality calculated by z-scoring all behavioral measured deficits (r = -0.667, P < .05). Similar but not significant correlations were observed in females. No correlation between GFP+ cell atrophy with anxiety-like behavior was found. CONCLUSION: Chronic stress exposure induces a progressive atrophy of cortical astroglial cells, potentially contributing to maladaptive neuroplastic and behavioral changes associated with stress-related disorders.


Asunto(s)
Astrocitos/metabolismo , Corteza Prefrontal/metabolismo , Estrés Psicológico/metabolismo , Animales , Ansiedad/metabolismo , Depresión/metabolismo , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Masculino , Ratones , Ratones Transgénicos , Plasticidad Neuronal , Restricción Física
14.
PLoS One ; 16(8): e0256400, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34411167

RESUMEN

BACKGROUND: WHO recommends use of rapid dual HIV/syphilis tests for screening pregnant women (PW) during antenatal care to prevent mother-to-child transmission. Scale-up of testing implies a need to accurately forecast and procure benzathine penicillin (BPG) to treat the additionally identified PW with syphilis. METHODS: Country-reported ANC coverage, PW syphilis screening and treatment coverage values in 2019 were scaled linearly to EMTCT targets by 2030 (constant increasing slope from 2019 figures to 95% in 2030) for 11 focus countries. Antenatal syphilis screening coverage was substituted with HIV screening coverage to estimate potential contribution of rapid dual HIV/syphilis tests in identifying additional PW with syphilis. BPG demand was calculated for 2019-2030 accordingly. RESULTS: The estimated demand for BPG (in 2.4 million unit vials) using current maternal syphilis prevalence and treatment coverage will increase from a baseline of 414,459 doses in 2019 to 683,067 doses (+65%) in 2021 assuming immediate replacement of single HIV test kits with rapid dual HIV/syphilis tests for these 11 countries. Continued scale up of syphilis screening and treatment coverage to reach elimination coverage of 95% will result in an estimated demand increase of 160%, (663,969 doses) from 2019 baseline for a total demand of 1,078,428 BPG doses by 2030. CONCLUSIONS: Demand for BPG will increase following adoption of rapid dual HIV/syphilis test kits due to increases in maternal diagnoses of syphilis. To eliminate congenital syphilis, MNCH clinical programs will need to synergize with disease surveillance programs to accurately forecast BPG demand with scale up of antenatal syphilis screening to ensure adequate treatment is available for pregnant women diagnosed with syphilis.


Asunto(s)
Sífilis Congénita , Adulto , Femenino , Humanos , Transmisión Vertical de Enfermedad Infecciosa , Embarazo , Complicaciones Infecciosas del Embarazo
15.
Neurotoxicology ; 84: 184-197, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33774066

RESUMEN

Parkinson's disease (PD), a common neurodegenerative motor disorder characterized by striatal dopaminergic neuronal loss and localized neuroinflammation in the midbrain region. Activation of microglia is associated with various inflammatory mediators and Kynurenine pathway (KP) being one of the major regulator of immune response, is involved in the neuroinflammatory and neurotoxic cascade in PD. In the current study, 1-Methyltryptophan (1-MT), an Indolamine-2,3-dioxygenase-1 (IDO-1) inhibitor was tested at different doses (2.5 mg/kg, 5 mg/kg and 10 mg/kg) for its effect on behavioral parameters, oxidative stress, neuroinflammation, apoptosis, mitochondrial dysfunction, neurotransmitter levels, biochemical and behavioral alterations in unilateral 6-OHDA (3 µg/µL) murine model of PD. The results showed improved locomotion in open field test and motor coordination in rota-rod, reduced oxidative stress, neuroinflammatory markers (TNF-α, IFN-γ, IL-6), mitochondrial dysfunction and neuronal apoptosis (caspase-3). Also, restoration of neurotransmitter levels (dopamine and homovanillic acid) in the striatum and increased striatal BDNF levels were observed. Overall findings suggest that 1-MT could be a potential candidate for further studies to explore its possibility as an alternative in the pharmacotherapy of PD.


Asunto(s)
Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Mitocondrias/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Trastornos Parkinsonianos/prevención & control , Triptófano/análogos & derivados , Animales , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Mitocondrias/metabolismo , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/fisiología , Oxidopamina/toxicidad , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/metabolismo , Triptófano/farmacología , Triptófano/uso terapéutico
16.
Metab Brain Dis ; 36(6): 1315-1330, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33740181

RESUMEN

The night shift paradigm induces a state of chronic partial sleep deprivation (CPSD) and enhances the vulnerability to neuronal dysfunction. However, the specific neuronal impact of CPSD has not been thoroughly explored to date. In the current study, the night shift condition was mimicked in female Swiss albino mice. The classical sleep deprivation model, i.e., Modified Multiple Platform (MMP) method, was used for 8 h/day from Monday to Friday with Saturday and Sunday as a weekend off for nine weeks. Following nine weeks of night shift schedule, their neurobehavioral profile and physiological parameters were assessed along with the activity of the mitochondrial complexes, oxidative stress, serotonin levels, and inflammatory markers in the brain. Mice showed an overall hyperactive behavioral profile including hyperlocomotion, aggression, and stereotyped behavior accompanied by decreased activity of mitochondrial enzymes and serotonin levels, increased oxidative stress and inflammatory markers in whole brain homogenates. Collectively, the study points towards the occurrence of a hyperactive behavioral profile akin to mania and psychosis as a potential consequence of CPSD.


Asunto(s)
Privación de Sueño/psicología , Trastornos del Sueño del Ritmo Circadiano/psicología , Agresión , Animales , Ansiedad/etiología , Ansiedad/psicología , Química Encefálica , Enfermedad Crónica , Depresión/etiología , Depresión/psicología , Femenino , Hipercinesia/etiología , Hipercinesia/psicología , Mediadores de Inflamación/metabolismo , Ratones , Mitocondrias/metabolismo , Actividad Motora , Estrés Oxidativo , Serotonina/metabolismo , Conducta Estereotipada
17.
Inflammopharmacology ; 29(2): 499-511, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33517508

RESUMEN

Huntington's disease (HD) is a progressive neurodegenerative and hyperkinetic movement disorder. Decreased activity of cAMP-responsive element-binding protein (CREB) is thought to contribute to the death of striatal medium spiny neurons in HD. The present study has been designed to explore the possible role of roflumilast against qunilonic acid (QA) induced neurotoxicity in rats intending to investigate whether it inhibits the neuroinflammatory response through activation of the cAMP/CREB/BDNF signaling pathway. QA was microinjected (200 nmol/2 µl, bilaterally) through the intrastriatal route in the stereotaxic apparatus. Roflumilast (0.5, 1, and 2 mg/kg, orally) once-daily treatment for 21 days significantly improved locomotor activity in actophotometer, motor coordination in rotarod, and impaired gait performance in narrow beam walk test. Moreover, roflumilast treatment significantly attenuated oxidative and nitrosative stress (p < 0.05) through attenuating lipid peroxidation nitrite concentration and enhancing reduced glutathione, superoxide dismutase, and catalase levels. Furthermore, roflumilast also significantly decreased elevated pro-inflammatory cytokines like TNF-α (p < 0.01), IL-6 (p < 0.01), IFN-γ (p < 0.05), NF-κB (p < 0.05) and significantly increased BDNF(p < 0.05) in the striatum and cortex of rat brain. The results further demonstrated that roflumilast effectively increased the gene expression of cAMP(p < 0.05), CREB(p < 0.05) and decreased the gene expression of PDE4 (p < 0.05) in qRT-PCR. These results conclusively depicted that roflumilast could be a potential candidate as an effective therapeutic agent in the management of HD through the cAMP/CREB/BDNF signaling pathway.


Asunto(s)
Aminopiridinas/farmacología , Benzamidas/farmacología , Enfermedad de Huntington/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Aminopiridinas/administración & dosificación , Animales , Benzamidas/administración & dosificación , Factor Neurotrófico Derivado del Encéfalo/metabolismo , AMP Cíclico/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Ciclopropanos/administración & dosificación , Ciclopropanos/farmacología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Enfermedad de Huntington/fisiopatología , Inflamación/patología , Masculino , FN-kappa B/metabolismo , Fármacos Neuroprotectores/administración & dosificación , Estrés Nitrosativo/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Ácido Quinolínico/toxicidad , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos
18.
Toxicol Appl Pharmacol ; 402: 115124, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32652086

RESUMEN

Atypical antipsychotics (AAPs) have the tendency of inducing severe metabolic alterations like obesity, diabetes mellitus, insulin resistance, dyslipidemia and cardiovascular complications. These alterations have been attributed to altered hypothalamic appetite regulation, energy sensing, insulin/leptin signaling, inflammatory reactions and active reward anticipation. Line of evidence suggests that transient receptor potential vanilloid type 1 and 3 (TRPV1 and TRPV3) channels are emerging targets in treatment of obesity, diabetes mellitus and could modulate feed intake. The present study was aimed to investigate the putative role TRPV1/TRPV3 in olanzapine-induced metabolic alterations in mice. Female BALB/c mice were treated with olanzapine for six weeks to induce metabolic alterations. Non-selective TRPV1/TRPV3 antagonist (ruthenium red) and selective TRPV1 (capsazepine) and TRPV3 antagonists (2,2-diphenyltetrahydrofuran or DPTHF) were used to investigate the involvement of TRPV1/TRPV3 in chronic olanzapine-induced metabolic alterations. These metabolic alterations were differentially reversed by ruthenium red and capsazepine, while DPTHF didn't show any significant effect. Olanzapine treatment also altered the mRNA expression of hypothalamic appetite-regulating and nutrient-sensing factors, inflammatory genes and TRPV1/TRPV3, which were reversed with ruthenium red and capsazepine treatment. Furthermore, olanzapine treatment also increased expression of TRPV1/TRPV3 in nucleus accumbens (NAc), TRPV3 expression in ventral tegmental area (VTA), which were reversed by the respective antagonists. However, DPTHF treatment showed reduced feed intake in olanzapine treated mice, which might be due to TRPV3 specific antagonism and reduced hedonic feed intake. In conclusion, our results suggested the putative role TRPV1 in hypothalamic dysregulations and TRPV3 in the mesolimbic pathway; both regulate feeding in olanzapine treated mice.


Asunto(s)
Regulación del Apetito/efectos de los fármacos , Inflamación/metabolismo , Olanzapina/farmacología , Canales Catiónicos TRPV/metabolismo , Animales , Capsaicina/administración & dosificación , Capsaicina/análogos & derivados , Capsaicina/farmacología , Colorantes/administración & dosificación , Colorantes/farmacología , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/fisiología , Femenino , Furanos/administración & dosificación , Furanos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Prueba de Tolerancia a la Glucosa , Hipoglucemiantes/administración & dosificación , Hipoglucemiantes/farmacología , Hipotálamo/efectos de los fármacos , Inflamación/genética , Metformina/administración & dosificación , Metformina/farmacología , Ratones , Ratones Endogámicos BALB C , Actividad Motora , Rojo de Rutenio/administración & dosificación , Rojo de Rutenio/farmacología , Fármacos del Sistema Sensorial/administración & dosificación , Fármacos del Sistema Sensorial/farmacología , Canales Catiónicos TRPV/genética
19.
Life Sci ; 247: 117442, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32081663

RESUMEN

Transient receptor potential vanilloid type 1 (TRPV1) channels are emerging therapeutic targets for metabolic disorders. Berberine, which is a modulator of TRPV1, has proven antiobesity and antidiabetic potentials. The present study was aimed to investigate the protective effects of berberine in olanzapine-induced alterations in hypothalamic appetite control, inflammation and metabolic aberrations in mice targeting TRPV1 channels. Female BALB/c mice (18-23 g) were treated with olanzapine (6 mg/kg, p.o.) for six weeks to induce metabolic alterations, while berberine (100 and 200 mg/kg, p.o.) and metformin (100 mg/kg, p.o) were used as test and standard interventions respectively. Weekly assessment of feed-water intake, body temperature and body weight was done, while locomotion was measured at the end of week 1 and 6. Serum glucose and lipid profile were assessed by biochemical methods, while other serum biomarkers were assessed by ELISA. qPCR was used to quantify the mRNA expression in the hypothalamus. Olanzapine treatment significantly increased the feed intake, weight gain, adiposity index, while reduced body temperature and locomotor activity which were reversed by berberine treatment. Berberine treatment reduced serum ghrelin and leptin levels as well decrease in hypothalamic mRNA expression of orexigenic neuropeptides, inflammatory markers and ghrelin receptor in olanzapine-treated mice. Olanzapine treatment increased expression of TRPV1/TRPV3 in the hypothalamus which was significantly decreased by berberine treatment. Our results suggest that berberine, by TRPV1/TRPV3 modulation, attenuated the olanzapine-induced metabolic alterations in mice. Hence berberine supplementation in psychiatric patients could be a preventive approach to reduce the metabolic adverse effects of antipsychotics.


Asunto(s)
Antipsicóticos/uso terapéutico , Berberina/uso terapéutico , Enfermedades Metabólicas/tratamiento farmacológico , Olanzapina/metabolismo , Canales Catiónicos TRPV/metabolismo , Animales , Antipsicóticos/efectos adversos , Berberina/efectos adversos , Temperatura Corporal , Peso Corporal , Citocinas/metabolismo , Ingestión de Líquidos , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Ghrelina/sangre , Ghrelina/metabolismo , Hipotálamo/metabolismo , Leptina/sangre , Leptina/metabolismo , Metformina/farmacología , Metformina/uso terapéutico , Ratones , Ratones Endogámicos BALB C , Terapia Molecular Dirigida/métodos , Neuropéptidos/metabolismo , Obesidad , ARN Mensajero , Transducción de Señal , Canales Catiónicos TRPV/genética , Resultado del Tratamiento
20.
Neurochem Int ; 131: 104545, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31494132

RESUMEN

Neuropsychiatric disorders (NPDs) exert a devastating impact on an individual's personal and social well-being, encompassing various conditions and brain anomalies that influence affect, cognition, and behavior. Because the pathophysiology of NPDs is multifactorial, the precise mechanisms underlying the development of such disorders remain unclear, representing a unique challenge in current neuropsychopharmacotherapy. Transient receptor potential vanilloid (TRPV) type channels are a family of ligand-gated ion channels that mainly include sensory receptors that respond to thermal, mechanical and chemical stimuli. TRPV channels are abundantly present in dopaminergic neurons, thus playing a pivotal role in the modulation of the reward system and in pathophysiology of diseases such as stress, anxiety, depression, schizophrenia, neurodegenerative disorders and substance abuse/addiction. Recent evidence has highlighted TRPV channels as potential targets for understanding modulation of the reward system and various forms of addiction (opioids, cocaine, amphetamines, alcohol, nicotine, cannabis). In this review, we discuss the distribution, physiological roles, ligands and therapeutic importance of TRPV channels with regard to NPDs and addiction biology.


Asunto(s)
Conducta Adictiva/tratamiento farmacológico , Conducta Adictiva/psicología , Trastornos Mentales/tratamiento farmacológico , Trastornos Mentales/fisiopatología , Recompensa , Canales Catiónicos TRPV/fisiología , Animales , Humanos , Canales Catiónicos TRPV/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA