Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 349: 140833, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38043620

RESUMEN

New materials' synthesis and utilization have shown many critical challenges in healthcare and other industrial sectors as most of these materials are directly or indirectly developed from fossil fuel resources. Environmental regulations and sustainability concepts have promoted the use of natural compounds with unique structures and properties that can be biodegradable, biocompatible, and eco-friendly. In this context, nanocellulose (NC) utility in different sectors and industries is reported due to their unique properties including biocompatibility and antimicrobial characteristics. The bacterial nanocellulose (BNC)-based materials have been synthesized by bacterial cells and extracted from plant waste materials including pineapple plant waste biomass. These materials have been utilized in the form of nanofibers and nanocrystals. These materials are found to have excellent surface properties, low density, and good transparency, and are rich in hydroxyl groups for their modifications to other useful products. These materials are well utilized in different sectors including biomedical or health care centres, nanocomposite materials, supercapacitors, and polymer matrix production. This review explores different approaches for NC production from pineapple waste residues using biotechnological interventions, approaches for their modification, and wider applications in different sectors. Recent technological developments in NC production by enzymatic treatment are critically discussed. The utilization of pineapple waste-derived NC from a bioeconomic perspective is summarized in the paper. The chemical composition and properties of nanocellulose extracted from pineapple waste may have unique characteristics compared to other sources. Pineapple waste for nanocellulose production aligns with the principles of sustainability, waste reduction, and innovation, making it a promising and novel approach in the field of nanocellulose materials.


Asunto(s)
Ananas , Nanopartículas , Celulosa/química , Biomasa , Nanopartículas/química , Polímeros
2.
Environ Res ; 221: 115237, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36632885

RESUMEN

Pineapple peel waste (PPW) is obtained in huge quantities out of pineapple canning industries and it is found to be rich in bioactive compounds with antioxidant activity and an opulent source of bromelain protein having commercial importance. To fulfil the purpose, microwave assisted extraction was considered. Three parameters varied were solvent to substrate ratio, microwave power and extraction time. The independent variables were solvent to substrate ratio (10:1 mL/g to 20:1 mL/g), microwave power (300 W-600 W) and extraction time (40 min-50 min). Optimization was done with three factors and three level Box- Behnken Design (BBD). Each of the experiment has been analysed for Total phenolic content (TPC), Total flavonoid content (TFC), Total tannin content (TTC) as well as for protein content. The Folin- Ciocalteu method was utilized for analysing TPC, TTC and the colorimetric method (AlCl3) was used for the analysis of TFC, protein content was analysed by lowry's method and antioxidant activity making use of 2,2-diphenyl-1-picrylhydrazyl (DPPH). The p values were less than 0.05 which showed all the four models were significant. The experimental values and the predicted values were harmonious for the optimum conditions. The optimum condition obtained out of BBD were solvent to substrate ratio of 20:1 mL/g, microwave power of 600 W and extraction time 40 min. Antioxidant activity for the extract was found out by DPPH assay under the optimized conditions was 75% along with proteolytic activity of bromelain as 1647.612 GDUgconcentrate-1.


Asunto(s)
Ananas , Antioxidantes , Antioxidantes/análisis , Bromelaínas , Microondas , Fenoles/química , Solventes/química
3.
Development ; 144(17): 3156-3167, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28851724

RESUMEN

During mammalian neocortical development, neural stem/progenitor cells (NSCs) sequentially give rise to deep layer neurons and superficial layer neurons through mid- to late-embryonic stages, shifting to gliogenic phase at perinatal stages. Previously, we found that the Hes genes inhibit neuronal differentiation and maintain NSCs. Here, we generated transgenic mice that overexpress Hes5 in NSCs of the central nervous system, and found that the transition timing from deep to superficial layer neurogenesis was shifted earlier, while gliogenesis precociously occurred in the developing neocortex of Hes5-overexpressing mice. By contrast, the transition from deep to superficial layer neurogenesis and the onset of gliogenesis were delayed in Hes5 knockout (KO) mice. We found that the Hmga genes (Hmga1/2) were downregulated in the neocortical regions of Hes5-overexpressing brain, whereas they were upregulated in the Hes5 KO brain. Furthermore, we found that Hes5 expression led to suppression of Hmga1/2 promoter activity. These results suggest that Hes5 regulates the transition timing between phases for specification of neocortical neurons and between neurogenesis and gliogenesis, accompanied by alteration in the expression levels of Hgma genes, in mammalian neocortical development.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Mamíferos/embriología , Neocórtex/embriología , Neocórtex/metabolismo , Neurogénesis/genética , Proteínas Represoras/metabolismo , Animales , Astrocitos/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular , Proliferación Celular , Regulación hacia Abajo/genética , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Genes Reporteros , Mamíferos/genética , Ratones Transgénicos , Células-Madre Neurales/metabolismo , Neuroglía/metabolismo , Neuronas/citología , Neuronas/metabolismo , Regiones Promotoras Genéticas/genética , Proteínas Represoras/genética , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...