Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Part Ther ; 10(1): 1-12, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37823012

RESUMEN

Purpose: Although both intensity-modulated radiation therapy (IMRT) and proton beam therapy (PBT) offer effective long-term disease control for localized prostate cancer (PCa), there are limited data directly comparing the 2 modalities. Methods: The data from 334 patients treated with conventionally fractionated (79.2 GyRBE in 44 fractions) PBT or IMRT were retrospectively analyzed. Propensity score matching was used to balance factors associated with biochemical failure-free survival (BFFS). Age, race, and comorbidities (not BFFS associates) remained imbalanced after matching. Univariable and covariate-adjusted multivariable (MVA) Cox regression models were used to determine if modality affected BFFS. Results: Of 334 patients, 176 (52.7%) were included in the matched cohort with exact matching to National Comprehensive Cancer Network (NCCN) risk group. With a median follow-up time of 9.0 years (interquartile range [IQR]: 7.8-10.2 years), long-term BFFS was similar between the IMRT and PBT matched arms with 8-year estimates of 85% (95% CI: 76%-91%) and 91% (95% CI: 82%-96%, P = .39), respectively. On MVA, modality was not significantly associated with BFFS in both the unmatched (hazard ratio [HR] = 0.75, 95% CI: 0.35-1.63, P = .47) and matched (HR = 0.87, 95% CI: 0.33-2.33, P = .78) cohorts. Prostate cancer-specific survival (PCSS) and overall survival (OS) were also similar (P > .05). However, in an unmatched analysis, the PBT arm had significantly fewer incidences of secondary cancers within the irradiated field (0.6%, 95% CI: 0.0%-3.1% versus 4.5%, 95% CI: 1.8%-9.0%, P = .028). Conclusions: Both PBT and IMRT offer excellent long-term disease control for PCa, with no significant differences between the 2 modalities in BFFS, PCSS, and OS in matched patients. In the unmatched cohort, fewer incidences of secondary malignancy were noted in the PBT group; however, owing to overall low incidence of secondary cancer and imbalanced patient characteristics between the 2 groups, these data are strictly hypothesis generating and require further investigation.

2.
Front Oncol ; 13: 1216461, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37554170

RESUMEN

In transplant-eligible patients who undergo upfront autologous stem cell transplant (ASCT) for multiple myeloma (MM), standard practice is to treat with six to eight cycles of induction therapy followed by high-dose chemotherapy with ASCT. A gap between the end of induction and the day of ASCT exists to allow stem cell mobilization and collection. Despite attempts to limit the length of this interval, we noticed that some patients experience interval progression (IP) of disease between the end of induction therapy and the day of ASCT. We analyzed 408 MM patients who underwent ASCT between 2011 and 2016. The median length of the interval between end of induction and ASCT was 38 days. We observed that 26% of patients in the entire cohort and 23.6% of patients who received induction with bortezomib-lenalidomide-dexamethasone (VRD) experienced IP. These patients deepened their responses with ASCT, independently of induction regimen. In the entire cohort, IP was significantly associated with shorter PFS in the univariable analysis (Hazard Ratio, HR = 1.37, P = 0.022) but not in the multivariable analysis (HR = 1.14, P = 0.44). However, analyzing only patients who received VRD as induction, progression-free survival (PFS) remained inferior in both the univariable (HR = 2.02; P = 0.002) and the multivariable analyses (HR = 1.96; P = 0.01). T cells and natural killer (NK) cells are increasingly studied targets of immunomodulatory therapy, as immune dysfunction is known to occur in patients with MM. Peripheral blood from 35 MM patients were analyzed. At time of ASCT, patients with IP had significantly increased percentages of CD3+CD8+CD57+ CD28- (P = 0.05) and CD3+CD4+LAG3+ (P = 0.0022) T-cells, as well as less CD56bright and CD56dim NK cells bearing activated markers such as CD69, NKG2D, and CD226. These data suggest that IP can impact the length of response to ASCT; therefore, further studies on the management of these patients are needed.

4.
Int J Part Ther ; 8(4): 14-24, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35530185

RESUMEN

Purpose: Long-term data regarding the disease control outcomes of proton beam therapy (PBT) for patients with favorable risk intact prostate cancer (PC) are limited. Herein, we report our institution's long-term disease control outcomes in PC patients with clinically localized disease who received PBT as primary treatment. Methods: One hundred sixty-six favorable risk PC patients who received definitive PBT to the prostate gland at our institution from 2010 to 2012 were retrospectively assessed. The outcomes studied were biochemical failure-free survival (BFFS), biochemical failure, local failure, regional failure, distant failure, PC-specific survival, and overall survival. Patterns of failure were also analyzed. Multivariate Cox proportional hazards modeling was used to estimate independent predictors of BFFS. Results: The median length of follow-up was 8.3 years (range, 1.2-10.5 years). The majority of patients had low-risk disease (58%, n = 96), with a median age of 64 years at the onset of treatment. Of 166 treated men, 13 (7.8%), 8 (4.8%), 2 (1.2%) patient(s) experienced biochemical failure, local failure, regional failure, respectively. Regional failure was seen in an obturator lymph node in 1 patient and the external iliac lymph nodes in the other. None of the patients experienced distant failure. There were 5 (3.0%) deaths, none of which were due to PC. The 5- and 8-year BFFS rate were 97% and 92%, respectively. None of the clinical disease characteristics or treatment-related factors assessed were associated with BFFS on multivariate Cox proportional hazards modeling (all P > .05). Conclusion: Disease control rates reported in our assessment of PBT were similar to those reported in previous clinically localized intact PC analyses, which used intensity-modulated radiotherapy, three-dimensional conformal radiotherapy, or radical prostatectomy as definitive therapy. In addition, BFFS rates were similar, if not improved, to previous PBT studies.

5.
Nucleic Acids Res ; 47(12): 6452-6465, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31032518

RESUMEN

Mature tRNAs are generated by multiple post-transcriptional processing steps, which can include intron removal. Recently, we discovered a new class of circular non-coding RNAs in metazoans, called tRNA intronic circular (tric)RNAs. To investigate the mechanism of tricRNA biogenesis, we generated constructs that replace native introns of human and fruit fly tRNA genes with the Broccoli fluorescent RNA aptamer. Using these reporters, we identified cis-acting elements required for tricRNA formation in vivo. Disrupting a conserved base pair in the anticodon-intron helix dramatically reduces tricRNA levels. Although the integrity of this base pair is necessary for proper splicing, it is not sufficient. In contrast, strengthening weak bases in the helix also interferes with splicing and tricRNA production. Furthermore, we identified trans-acting factors important for tricRNA biogenesis, including several known tRNA processing enzymes such as the RtcB ligase and components of the TSEN endonuclease complex. Depletion of these factors inhibits Drosophila tRNA intron circularization. Notably, RtcB is missing from fungal genomes and these organisms normally produce linear tRNA introns. Here, we show that in the presence of ectopic RtcB, yeast lacking the tRNA ligase Rlg1/Trl1 are converted into producing tricRNAs. In summary, our work characterizes the major players in eukaryotic tricRNA biogenesis.


Asunto(s)
Intrones , ARN Circular/química , ARN Circular/metabolismo , ARN de Transferencia/química , ARN de Transferencia/metabolismo , Animales , Drosophila/genética , Endorribonucleasas/metabolismo , Humanos , Motivos de Nucleótidos , Precursores del ARN/química , Precursores del ARN/metabolismo , Empalme del ARN , Saccharomyces cerevisiae/genética
6.
Genes Dev ; 29(24): 2633-44, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26680305

RESUMEN

Transfer ribonucleic acids (tRNAs) are essential for protein synthesis. However, key gene products involved in tRNA biogenesis and subcellular movement remain to be discovered. We conducted the first comprehensive unbiased analysis of the role of nearly an entire proteome in tRNA biology and describe 162 novel and 12 previously known Saccharomyces cerevisiae gene products that function in tRNA processing, turnover, and subcellular movement. tRNA nuclear export is of particular interest because it is essential, but the known tRNA exporters (Los1 [exportin-t] and Msn5 [exportin-5]) are unessential. We report that mutations of CRM1 (Exportin-1), MEX67/MTR2 (TAP/p15), and five nucleoporins cause accumulation of unspliced tRNA, a hallmark of defective tRNA nuclear export. CRM1 mutation genetically interacts with los1Δ and causes altered tRNA nuclear-cytoplasmic distribution. The data implicate roles for the protein and mRNA nuclear export machineries in tRNA nuclear export. Mutations of genes encoding actin cytoskeleton components and mitochondrial outer membrane proteins also cause accumulation of unspliced tRNA, likely due to defective splicing on mitochondria. Additional gene products, such as chromatin modification enzymes, have unanticipated effects on pre-tRNA end processing. Thus, this genome-wide screen uncovered putative novel pathways for tRNA nuclear export and extensive links between tRNA biology and other aspects of cell physiology.


Asunto(s)
Núcleo Celular/metabolismo , Citoplasma/metabolismo , ARN de Transferencia/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transporte Activo de Núcleo Celular/genética , Genoma Fúngico/genética , Mutación , Transporte de ARN/genética , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...