Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3737, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702313

RESUMEN

Twisted bilayer graphene (tBLG) provides a fascinating platform for engineering flat bands and inducing correlated phenomena. By designing the stacking architecture of graphene layers, twisted multilayer graphene can exhibit different symmetries with rich tunability. For example, in twisted monolayer-bilayer graphene (tMBG) which breaks the C2z symmetry, transport measurements reveal an asymmetric phase diagram under an out-of-plane electric field, exhibiting correlated insulating state and ferromagnetic state respectively when reversing the field direction. Revealing how the electronic structure evolves with electric field is critical for providing a better understanding of such asymmetric field-tunable properties. Here we report the experimental observation of field-tunable dichotomic electronic structure of tMBG by nanospot angle-resolved photoemission spectroscopy (NanoARPES) with operando gating. Interestingly, selective enhancement of the relative spectral weight contributions from monolayer and bilayer graphene is observed when switching the polarity of the bias voltage. Combining experimental results with theoretical calculations, the origin of such field-tunable electronic structure, resembling either tBLG or twisted double-bilayer graphene (tDBG), is attributed to the selectively enhanced contribution from different stacking graphene layers with a strong electron-hole asymmetry. Our work provides electronic structure insights for understanding the rich field-tunable physics of tMBG.

2.
Nano Lett ; 24(21): 6278-6285, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38758393

RESUMEN

Topological Dirac nodal-line semimetals host topologically nontrivial electronic structure with nodal-line crossings around the Fermi level, which could affect the photocarrier dynamics and lead to novel relaxation mechanisms. Herein, by using time- and angle-resolved photoemission spectroscopy, we reveal the previously inaccessible linear dispersions of the bulk conduction bands above the Fermi level in a Dirac nodal-line semimetal PtSn4, as well as the momentum and temporal evolution of the gapless nodal lines. A surprisingly ultrafast relaxation dynamics within a few hundred femtoseconds is revealed for photoexcited carriers in the nodal line. Theoretical calculations suggest that such ultrafast carrier relaxation is attributed to the multichannel scatterings among the complex metallic bands of PtSn4 via electron-phonon coupling. In addition, a unique dynamic relaxation mechanism contributed by the highly anisotropic Dirac nodal-line electronic structure is also identified. Our work provides a comprehensive understanding of the ultrafast carrier dynamics in a Dirac nodal-line semimetal.

3.
Nat Mater ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658674

RESUMEN

Magic-angle twisted bilayer graphene exhibits correlated phenomena such as superconductivity and Mott insulating states related to the weakly dispersing flat band near the Fermi energy. Such a flat band is expected to be sensitive to both the moiré period and lattice relaxations. Thus, clarifying the evolution of the electronic structure with the twist angle is critical for understanding the physics of magic-angle twisted bilayer graphene. Here we combine nano-spot angle-resolved photoemission spectroscopy and atomic force microscopy to resolve the fine electronic structure of the flat band and remote bands, as well as their evolution with twist angle from 1.07° to 2.60°. Near the magic angle, the dispersion is characterized by a flat band near the Fermi energy with a strongly reduced band width. Moreover, we observe a spectral weight transfer between remote bands at higher binding energy, which allows to extract the modulated interlayer spacing near the magic angle. Our work provides direct spectroscopic information on flat band physics and highlights the important role of lattice relaxations.

4.
Adv Mater ; 36(3): e2302297, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37565385

RESUMEN

Transition metal dichalcogenide (TMDC) films exhibit rich phases and superstructures, which can be controlled by the growth conditions as well as post-growth annealing treatment. Here, the selective growth of monolayer TaTe2 films with different phases as well as superstructures using molecular beam epitaxy (MBE) is reported. Monolayer 1H-TaTe2 and 1T-TaTe2 films can be selectively controlled by varying the growth temperature, and their different electronic structures are revealed through the combination of angle-resolved photoemission spectroscopy measurements (ARPES) and first-principles calculations. Moreover, post-growth annealing of the 1H-TaTe2 film further leads to a transition from a 19 × 19 $\sqrt {19}{\times }\sqrt {19}$ superstructure to a new 2 × 2 superstructure, where two gaps are observed in the electronic structure and persist up to room temperature. First-principles calculations reveal the role of the phonon instability in the formation of superstructures and the effect of local atomic distortions on the modified electronic structures. This work demonstrates the manipulation of the rich phases and superstructures of monolayer TaTe2 films by controlling the growth kinetics and post-growth annealing.

5.
Phys Rev Lett ; 131(11): 116401, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37774306

RESUMEN

Time-periodic light field can dress the electronic states and lead to light-induced emergent properties in quantum materials. While below-gap pumping is regarded favorable for Floquet engineering, so far direct experimental evidence of momentum-resolved band renormalization still remains missing. Here, we report experimental evidence of light-induced band renormalization in black phosphorus by pumping at photon energy of 160 meV, which is far below the band gap, and the distinction between below-gap pumping and near-resonance pumping is revealed. Our Letter demonstrates light-induced band engineering upon below-gap pumping, and provides insights for extending Floquet engineering to more quantum materials.

6.
Nat Commun ; 14(1): 4945, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37587106

RESUMEN

Ionic liquids provide versatile pathways for controlling the structures and properties of quantum materials. Previous studies have reported electrostatic gating of nanometer-thick flakes leading to emergent superconductivity, insertion or extraction of protons and oxygen ions in perovskite oxide films enabling the control of different phases and material properties, and intercalation of large-sized organic cations into layered crystals giving access to tailored superconductivity. Here, we report an ionic-liquid gating method to form three-dimensional transition metal monochalcogenides (TMMCs) by driving the metals dissolved from layered transition metal dichalcogenides (TMDCs) into the van der Waals gap. We demonstrate the successful self-intercalation of PdTe2 and NiTe2, turning them into high-quality PdTe and NiTe single crystals, respectively. Moreover, the monochalcogenides exhibit distinctive properties from dichalcogenides. For instance, the self-intercalation of PdTe2 leads to the emergence of superconductivity in PdTe. Our work provides a synthesis pathway for TMMCs by means of ionic liquid gating driven self-intercalation.

7.
Nature ; 614(7946): 75-80, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36725995

RESUMEN

Time-periodic light field has emerged as a control knob for manipulating quantum states in solid-state materials1-3, cold atoms4 and photonic systems5 through hybridization with photon-dressed Floquet states6 in the strong-coupling limit, dubbed Floquet engineering. Such interaction leads to tailored properties of quantum materials7-11, for example, modifications of the topological properties of Dirac materials12,13 and modulation of the optical response14-16. Despite extensive research interests over the past decade3,8,17-20, there is no experimental evidence of momentum-resolved Floquet band engineering of semiconductors, which is a crucial step to extend Floquet engineering to a wide range of solid-state materials. Here, on the basis of time and angle-resolved photoemission spectroscopy measurements, we report experimental signatures of Floquet band engineering in a model semiconductor, black phosphorus. On near-resonance pumping at a photon energy of 340-440 meV, a strong band renormalization is observed near the band edges. In particular, light-induced dynamical gap opening is resolved at the resonance points, which emerges simultaneously with the Floquet sidebands. Moreover, the band renormalization shows a strong selection rule favouring pump polarization along the armchair direction, suggesting pseudospin selectivity for the Floquetband engineering as enforced by the lattice symmetry. Our work demonstrates pseudospin-selective Floquet band engineering in black phosphorus and provides important guiding principles for Floquet engineering of semiconductors.

8.
Rev Sci Instrum ; 93(11): 113910, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36461493

RESUMEN

Developing a widely tunable vacuum ultraviolet (VUV) source with a sub-100 fs pulse duration is critical for ultrafast pump-probe techniques such as time- and angle-resolved photoemission spectroscopy (TrARPES). While a tunable probe source with a photon energy of 5.3-7.0 eV has been recently implemented for TrARPES by using a KBe2BO3F2 (KBBF) device, the time resolution of 280-320 fs is still not ideal, which is mainly limited by the duration of the VUV probe pulse generated by the KBBF device. Here, by designing a new KBBF device, which is specially optimized for fs applications, an optimum pulse duration of 55 fs is obtained after systematic diagnostics and optimization. More importantly, a high time resolution of 81-95 fs is achieved for TrARPES measurements covering the probe photon energy range of 5.3-7.0 eV, making it particularly useful for investigating the ultrafast dynamics of quantum materials. Our work extends the application of the KBBF device to ultrafast pump-probe techniques with the advantages of both a widely tunable VUV source and ultimate time resolution.

9.
Natl Sci Rev ; 9(5): nwab175, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35663240

RESUMEN

Electron-phonon interaction and related self-energy are fundamental to both the equilibrium properties and non-equilibrium relaxation dynamics of solids. Although electron-phonon interaction has been suggested by various time-resolved measurements to be important for the relaxation dynamics of graphene, the lack of energy- and momentum-resolved self-energy dynamics prohibits direct identification of the role of specific phonon modes in the relaxation dynamics. Here, by performing time- and angle-resolved photoemission spectroscopy measurements on Kekulé-ordered graphene with folded Dirac cones at the Γ point, we have succeeded in resolving the self-energy effect induced by the coupling of electrons to two phonons at Ω1 = 177 meV and Ω2 = 54 meV, and revealing its dynamical change in the time domain. Moreover, these strongly coupled phonons define energy thresholds, which separate the hierarchical relaxation dynamics from ultrafast, fast to slow, thereby providing direct experimental evidence for the dominant role of mode-specific phonons in the relaxation dynamics.

10.
Rev Sci Instrum ; 93(1): 013902, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-35104958

RESUMEN

Time- and angle-resolved photoemission spectroscopy (TrARPES) is a powerful technique for capturing the ultrafast dynamics of charge carriers and revealing photo-induced phase transitions in quantum materials. However, the lack of widely tunable probe photon energy, which is critical for accessing the dispersions at different out-of-plane momentum kz in TrARPES measurements, has hindered the ultrafast dynamics investigation of 3D quantum materials, such as Dirac or Weyl semimetals. Here, we report the development of a TrARPES system with a highly tunable probe photon energy from 5.3 to 7.0 eV. The tunable probe photon energy is generated by the fourth harmonic generation of a tunable wavelength femtosecond laser source by combining a ß-BaB2O4 crystal and a KBe2BO3F2 crystal. A high energy resolution of 29-48 meV and time resolution of 280-320 fs are demonstrated on 3D topological materials ZrTe5 and Sb2Te3. Our work opens up new opportunities for exploring ultrafast dynamics in 3D quantum materials.

11.
Nano Lett ; 22(3): 1138-1144, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35050626

RESUMEN

Revealing the ultrafast dynamics of three-dimensional (3D) Dirac fermions is critical for both fundamental science and device applications. So far, how the cooling of 3D Dirac fermions differs from that of two-dimensional (2D) and whether there is population inversion are fundamental questions to be answered. Here we reveal the ultrafast dynamics of Dirac fermions in a model 3D Dirac semimetal Cd3As2 by time- and angle-resolved photoemission spectroscopy with a tunable probe photon energy. The energy- and momentum-resolved relaxation rate shows a linear dependence on the energy, suggesting Dirac fermion cooling through intraband relaxation. Moreover, a population inversion is reported based on the observation of accumulated photoexcited carriers in the conduction band with a lifetime of 3.0 ps. Our work provides direct experimental evidence for a long-lived population inversion in a 3D Dirac semimetal, which is in contrast to 2D graphene with a much shorter lifetime.

12.
Nat Commun ; 12(1): 5873, 2021 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-34620875

RESUMEN

Combination of low-dimensionality and electron correlation is vital for exotic quantum phenomena such as the Mott-insulating phase and high-temperature superconductivity. Transition-metal dichalcogenide (TMD) 1T-TaS2 has evoked great interest owing to its unique nonmagnetic Mott-insulator nature coupled with a charge-density-wave (CDW). To functionalize such a complex phase, it is essential to enhance the CDW-Mott transition temperature TCDW-Mott, whereas this was difficult for bulk TMDs with TCDW-Mott < 200 K. Here we report a strong-coupling 2D CDW-Mott phase with a transition temperature onset of ~530 K in monolayer 1T-TaSe2. Furthermore, the electron correlation derived lower Hubbard band survives under external perturbations such as carrier doping and photoexcitation, in contrast to the bulk counterpart. The enhanced Mott-Hubbard and CDW gaps for monolayer TaSe2 compared to NbSe2, originating in the lattice distortion assisted by strengthened correlations and disappearance of interlayer hopping, suggest stabilization of a likely nonmagnetic CDW-Mott insulator phase well above the room temperature. The present result lays the foundation for realizing monolayer CDW-Mott insulator based devices operating at room temperature.

13.
Nano Lett ; 21(14): 6080-6086, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34242038

RESUMEN

MnBi8Te13 is an intrinsic ferromagnetic (FM) topological insulator with different complex surface terminations. Resolving the electronic structures of different termination surfaces and manipulation of the electronic state are important. Here, by using micrometer spot time- and angle-resolved photoemission spectroscopy (µ-TrARPES), we resolve the electronic structures and reveal the ultrafast dynamics upon photoexcitation. Photoinduced filling of the surface state hybridization gap is observed for the Bi2Te3 quintuple layer directly above MnBi2Te4 accompanied by a nontrivial shift of the surface state, suggesting light-tunable interlayer interaction. Relaxation of photoexcited electrons and holes is observed within 1-2 ps. Our work reveals photoexcitation as a potential control knob for tailoring the interlayer interaction and surface state of MnBi8Te13.

14.
Phys Rev Lett ; 126(20): 206804, 2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34110212

RESUMEN

The low-energy excitations of graphene are relativistic massless Dirac fermions with opposite chiralities at valleys K and K^{'}. Breaking the chiral symmetry could lead to gap opening in analogy to dynamical mass generation in particle physics. Here we report direct experimental evidences of chiral symmetry breaking (CSB) from both microscopic and spectroscopic measurements in a Li-intercalated graphene. The CSB is evidenced by gap opening at the Dirac point, Kekulé-O type modulation, and chirality mixing near the gap edge. Our work opens up opportunities for investigating CSB related physics in a Kekulé-ordered graphene.

15.
Rev Sci Instrum ; 92(3): 033904, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33820058

RESUMEN

Achieving a high time resolution is highly desirable for revealing the electron dynamics and light-induced phenomena in time- and angle-resolved photoemission spectroscopy (TrARPES). Here, we identify key factors for achieving the optimum time resolution, including laser bandwidth and optical component induced chirp. A full diagnostic scheme is constructed to characterize the pulse duration and chirp of the fundamental beam, second harmonic, and fourth harmonic, and prism pairs are used to compensate for the chirp. Moreover, by using a Sb2Te3 film as a test sample, we can achieve a high test efficiency for the time resolution during the optimization process. An optimized time resolution of 81 fs is achieved in our TrARPES system with a high repetition rate tunable from 76 to 4.75/n MHz.

16.
Nat Commun ; 11(1): 2370, 2020 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-32398654

RESUMEN

The quantum limit is quite easy to achieve once the band crossing exists exactly at the Fermi level (EF) in topological semimetals. In multilayered Dirac fermion systems, the density of Dirac fermions on the zeroth Landau levels (LLs) increases in proportion to the magnetic field, resulting in intriguing angle- and field-dependent interlayer tunneling conductivity near the quantum limit. BaGa2 is an example of a multilayered Dirac semimetal with its quasi-2D Dirac cone located at EF, providing a good platform to study its interlayer transport properties. In this paper, we report the negative interlayer magnetoresistance induced by the tunneling of Dirac fermions between the zeroth LLs of neighboring Ga layers in BaGa2. When the field deviates from the c-axis, the interlayer resistivity ρzz(θ) increases and finally results in a peak with the applied field perpendicular to the c-axis. These unusual interlayer transport properties are observed together in the Dirac semimetal under ambient pressure and are well explained by the model of tunneling between Dirac fermions in the quantum limit.

17.
Nat Mater ; 19(3): 263-264, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32029907
18.
Nano Lett ; 18(8): 4664-4668, 2018 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-29991260

RESUMEN

Transition-metal dichalcogenides exhibit strong quantum confinement effects, and their electronic structure is strongly dependent on the number of layers. Resolving the thickness-dependent electronic structure is important. While the electronic structure of atomically thin 2H-MoSe2 or 2H-MoS2 have been explored, information on the experimental electronic structure of 2H-MoTe2 is still missing. Here, by using nanospot angle-resolved photoemission spectroscopy (nanoARPES), we reveal the experimental electronic structure of exfoliated 2H-MoTe2 thin flakes with different thickness (three, five, and seven monolayers). Well-separated quantum-well states are clearly observed in thin 2H-MoTe2 flakes at deep valence bands at energies between -3 to -5 eV, while those at the top of the valence band between -1 and -2 eV are much more closely spaced compared with those from 2H-MoSe2 and 2H-MoS2. First-principles calculation shows that the main difference is attributed to the weaker hybridization and smaller energy difference between Mo 4d z2 and Te 5p z orbitals as compared with Se 4p z and S 3p z orbitals. Our work demonstrates the power of nanoARPES in resolving the electronic structure of atomically thin exfoliated flakes.

19.
Proc Natl Acad Sci U S A ; 115(27): 6928-6933, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29915054

RESUMEN

The interlayer coupling can be used to engineer the electronic structure of van der Waals heterostructures (superlattices) to obtain properties that are not possible in a single material. So far research in heterostructures has been focused on commensurate superlattices with a long-ranged Moiré period. Incommensurate heterostructures with rotational symmetry but not translational symmetry (in analogy to quasicrystals) are not only rare in nature, but also the interlayer interaction has often been assumed to be negligible due to the lack of phase coherence. Here we report the successful growth of quasicrystalline 30° twisted bilayer graphene (30°-tBLG), which is stabilized by the Pt(111) substrate, and reveal its electronic structure. The 30°-tBLG is confirmed by low energy electron diffraction and the intervalley double-resonance Raman mode at 1383 cm-1 Moreover, the emergence of mirrored Dirac cones inside the Brillouin zone of each graphene layer and a gap opening at the zone boundary suggest that these two graphene layers are coupled via a generalized Umklapp scattering mechanism-that is, scattering of a Dirac cone in one graphene layer by the reciprocal lattice vector of the other graphene layer. Our work highlights the important role of interlayer coupling in incommensurate quasicrystalline superlattices, thereby extending band structure engineering to incommensurate superstructures.

20.
Nano Lett ; 17(3): 1564-1568, 2017 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-28222596

RESUMEN

The crystallographic stacking order in multilayer graphene plays an important role in determining its electronic structure. In trilayer graphene, rhombohedral stacking (ABC) is particularly intriguing, exhibiting a flat band with an electric-field tunable band gap. Such electronic structure is distinct from simple hexagonal stacking (AAA) or typical Bernal stacking (ABA) and is promising for nanoscale electronics and optoelectronics applications. So far clean experimental electronic spectra on the first two stackings are missing because the samples are usually too small in size (µm or nm scale) to be resolved by conventional angle-resolved photoemission spectroscopy (ARPES). Here, by using ARPES with a nanospot beam size (NanoARPES), we provide direct experimental evidence for the coexistence of three different stackings of trilayer graphene and reveal their distinctive electronic structures directly. By fitting the experimental data, we provide important experimental band parameters for describing the electronic structure of trilayer graphene with different stackings.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...