Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 677: 119-125, 2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37573766

RESUMEN

Sesquiterpene synthases convert farnesyl diphosphate into various sesquiterpenes, which find wide applications in the food, cosmetics and pharmaceutical industries. Although numerous putative sesquiterpene synthases have been identified in fungal genomes, many lack biochemical characterization. In this study, we identified a putative terpene synthase AcTPS3 from Acremonium chrysogenum. Through sequence analysis and in vitro enzyme assay, AcTPS3 was identified as a sesquiterpene synthase. To obtain sufficient product for NMR testing, a metabolic engineered Saccharomyces cerevisiae was constructed to overproduce the product of AcTPS3. The major product of AcTPS3 was identified as (+)-cubenene (55.46%) by GC-MS and NMR. Thus, AcTPS3 was confirmed as (+)-cubenene synthase, which is the first report of (+)-cubenene synthase. The optimized S. cerevisiae strain achieved a biosynthesis titer of 597.3 mg/L, the highest reported for (+)-cubenene synthesis.


Asunto(s)
Acremonium , Transferasas Alquil y Aril , Sesquiterpenos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sesquiterpenos/química , Acremonium/genética , Acremonium/metabolismo , Genoma Fúngico , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo
2.
Harmful Algae ; 123: 102391, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36894212

RESUMEN

The benthic dinoflagellate Prorocentrum lima is among the most common toxic morphospecies with a cosmopolitan distribution. P. lima can produce polyketide compounds, such as okadaic acid (OA), dinophysistoxin (DTX) and their analogues, which are responsible for diarrhetic shellfish poisoning (DSP). Studying the molecular mechanism of DSP toxin biosynthesis is crucial for understanding the environmental driver influencing toxin biosynthesis as well as for better monitoring of marine ecosystems. Commonly, polyketides are produced by polyketide synthases (PKS). However, no gene has been confirmatively assigned to DSP toxin production. Here, we assembled a transcriptome from 94,730,858 Illumina RNAseq reads using Trinity, resulting in 147,527 unigenes with average sequence length of 1035 nt. Using bioinformatics analysis methods, we found 210 unigenes encoding single-domain PKS with sequence similarity to type I PKSs, as reported in other dinoflagellates. In addition, 15 transcripts encoding multi-domain PKS (forming typical type I PKSs modules) and 5 transcripts encoding hybrid nonribosomal peptide synthetase (NRPS)/PKS were found. Using comparative transcriptome and differential expression analysis, a total of 16 PKS genes were identified to be up-regulated in phosphorus-limited cultures, which was related to the up regulation of toxin expression. In concert with other recent transcriptome analyses, this study contributes to the building consensus that dinoflagellates may utilize a combination of Type I multi-domain and single-domain PKS proteins, in an as yet undefined manner, to synthesize polyketides. Our study provides valuable genomic resource for future research in order to understand the complex mechanism of toxin production in this dinoflagellate.


Asunto(s)
Dinoflagelados , Policétidos , Dinoflagelados/genética , Dinoflagelados/metabolismo , Transcriptoma , Ecosistema , Perfilación de la Expresión Génica/métodos , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/química , Sintasas Poliquetidas/metabolismo , Policétidos/metabolismo
3.
Biosens Bioelectron ; 228: 115176, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36913884

RESUMEN

ß-myrcene is a high-value acyclic monoterpene. The low activity of myrcene synthase resulted to low biosynthetic titer of it. Biosensor is a promising tool applied for enzyme directed evolution. In this work, a novel genetically encoded biosensor responding to myrcene was established based on the MyrR regulator from Pseudomonas sp. Through sensing promoter characterization and engineering, the biosensor exhibiting excellent specificity and dynamic range was developed, and applied for directed evolution of myrcene synthase. After high-throughput screening of the myrcene synthase random mutation library, the best mutant R89G/N152S/D517N was obtained. Its catalytic efficiency was 1.47-fold than that of parent. Based on the mutants, the final production of myrcene reached 510.38 mg/L, which is the highest myrcene titer reported to date. This work demonstrates the great potential of whole-cell biosensor for improving enzymatic activity and the production of target metabolite.


Asunto(s)
Técnicas Biosensibles , Escherichia coli , Monoterpenos Acíclicos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Monoterpenos/metabolismo
4.
RSC Adv ; 13(2): 866-872, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36686919

RESUMEN

Photoaffinity labeling is a powerful technique to investigate the interactions between bioactive peptides and their targets. To construct a peptide-derived photoaffinity probe, at least two amino acids need to be modified or replaced, increasing experimental difficulties and negatively affecting activity. Herein, we report the synthesis of a clickable, photoreactive amino acid p-(4-(but-3-yn-1-yl)benzoyl)-l-phenylalanine (Abpa) and its Fmoc-protected version from 3-(4-bromophenyl)-1-propanol in 11 steps with an overall 12.5% yield. The amino acid contains both a photoreactive benzophenone and a clickable terminal alkyne which acts like a reporter tag by fast attachment to other functional groups via 'click' reaction, and a photoaffinity probe could be created by one single amino acid substitution during peptide synthesis. And its small size helps to retain bioactivity. The efficiency of Abpa was demonstrated by photoaffinity labeling experiments using photoactivatable probes of α-conotoxin MI.

5.
Microb Cell Fact ; 21(1): 89, 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35585553

RESUMEN

BACKGROUND: The sesquiterpene germacrene D is a highly promising product due to its wide variety of insecticidal activities and ability to serve as a precursor for many other sesquiterpenes. Biosynthesis of high value compounds through genome mining for synthases and metabolic engineering of microbial factories, especially Saccharomyces cerevisiae, has been proven to be an effective strategy. However, there have been no studies on the de novo synthesis of germacrene D from carbon sources in microbes. Hence, the construction of the S. cerevisiae cell factory to achieve high production of germacrene D is highly desirable. RESULTS: We identified five putative sesquiterpene synthases (AcTPS1 to AcTPS5) from Acremonium chrysogenum and the major product of AcTPS1 characterized by in vivo, in vitro reaction and NMR detection was revealed to be (-)-germacrene D. After systematically comparing twenty-one germacrene D synthases, AcTPS1 was found to generate the highest amount of (-)-germacrene D and was integrated into the terpene precursor-enhancing yeast strain, achieving 376.2 mg/L of (-)-germacrene D. Iterative engineering was performed to improve the production of (-)-germacrene D, including increasing the copy numbers of AcTPS1, tHMG1 and ERG20, and downregulating or knocking out other inhibitory factors (such as erg9, rox1, dpp1). Finally, the optimal strain LSc81 achieved 1.94 g/L (-)-germacrene D in shake-flask fermentation and 7.9 g/L (-)-germacrene D in a 5-L bioreactor, which is the highest reported (-)-germacrene D titer achieved to date. CONCLUSION: We successfully achieved high production of (-)-germacrene D in S. cerevisiae through terpene synthase mining and metabolic engineering, providing an impressive example of microbial overproduction of high-value compounds.


Asunto(s)
Saccharomyces cerevisiae , Sesquiterpenos , Ingeniería Metabólica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sesquiterpenos/metabolismo , Sesquiterpenos de Germacrano/metabolismo
6.
Cell Rep ; 36(3): 109413, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34289355

RESUMEN

Metabolic regulation strategies have been developed to redirect metabolic fluxes to production pathways. However, it is difficult to screen out target genes that, when repressed, improve yield without affecting cell growth. Here, we report a strategy using a quorum-sensing system to control small RNA transcription, allowing cell-density-dependent repression of target genes. This strategy is shown with convenient operation, dynamic repression, and availability for simultaneous regulation of multiple genes. The parameters Ai, Am, and RA (3-oxohexanoyl-homoserine lactone [AHL] concentrations at which half of the maximum repression and the maximum repression were reached and value of the maximum repression when AHL was added manually, respectively) are defined and introduced to characterize repression curves, and the variant LuxRI58N is identified as the most suitable tuning factor for shake flask culture. Moreover, it is shown that dynamic overexpression of the Hfq chaperone is the key to combinatorial repression without disruptions on cell growth. To show a broad applicability, the production titers of pinene, pentalenene, and psilocybin are improved by 365.3%, 79.5%, and 302.9%, respectively, by applying combinatorial dynamic repression.


Asunto(s)
Escherichia coli/genética , Sitios Genéticos , Percepción de Quorum/genética , ARN Bacteriano/metabolismo , Monoterpenos Bicíclicos/metabolismo , Vías Biosintéticas/genética , Ciclopentanos/metabolismo , Regulación Bacteriana de la Expresión Génica , Glucólisis , Psilocibina/metabolismo
7.
Biotechnol Lett ; 41(10): 1147-1154, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31428906

RESUMEN

OBJECTIVES: Developing a dynamic regulation strategy is an essential step in establishing an automatic control system for manipulating metabolic fluxes and cellular behaviors. To broaden the extent of the application, a system that can generally control any gene of interest is demanded. RESULTS: Through characterization and optimization, the strategy repressed the immediate expression incrementally from 0 to 90% during culturing. Moreover, by changing single base pair in the lux box of the Plux promoter, the degree of repression of the target genomic gene was tuned to a difference of 70%. This strategy is expected to control metabolic flux without disrupting cell growth. CONCLUSIONS: We engineered bacterial small RNA to develop a pathway-independent strategy that can dynamically repress the expression of any gene at the posttranscription level.


Asunto(s)
Escherichia coli/genética , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Percepción de Quorum , ARN Bacteriano/biosíntesis , ARN Pequeño no Traducido/biosíntesis
8.
Plasmid ; 105: 102431, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31319110

RESUMEN

Pinene is a monoterpene with wide industrial applications, especially as a promising high energy-density jet fuel. Traditional production of pinene on an industrial scale is material consumptive and has a low yield. As an alternative, microbial organisms have been engineered though advanced synthetic biological techniques to produce a variety of heterologous products, including pinene. Here, we investigated the stability of genetic circuits encoding the pinene producing pathway during fermentation and its relationship to the pinene titer. By replacing scar sequences in the genetic elements and modifying the genome of E. coli strain MG1655, plasmid loss caused by serious metabolic burden was eliminated, generating a remarkable increase in the pinene titer. Furthermore, the heterologous mevalonate pathway was analyzed by overexpression of enzymes and intermediates monitoring. Optimized pathway plasmids and strains were combined to increase the pinene titer to 104.6 mg/L.


Asunto(s)
Vías Biosintéticas/genética , Monoterpenos/metabolismo , Plásmidos/genética , Recombinación Genética/genética , Escherichia coli/genética , Fermentación , Plásmidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...