Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Nanomedicine ; 19: 5213-5226, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38855729

RESUMEN

Introduction: The emergence and rapid spread of multidrug-resistant bacteria (MRB) caused by the excessive use of antibiotics and the development of biofilms have been a growing threat to global public health. Nanoparticles as substitutes for antibiotics were proven to possess substantial abilities for tackling MRB infections via new antimicrobial mechanisms. Particularly, carbon dots (CDs) with unique (bio)physicochemical characteristics have been receiving considerable attention in combating MRB by damaging the bacterial wall, binding to DNA or enzymes, inducing hyperthermia locally, or forming reactive oxygen species. Methods: Herein, how the physicochemical features of various CDs affect their antimicrobial capacity is investigated with the assistance of machine learning (ML) tools. Results: The synthetic conditions and intrinsic properties of CDs from 121 samples are initially gathered to form the raw dataset, with Minimum inhibitory concentration (MIC) being the output. Four classification algorithms (KNN, SVM, RF, and XGBoost) are trained and validated with the input data. It is found that the ensemble learning methods turn out to be the best on our data. Also, ε-poly(L-lysine) CDs (PL-CDs) were developed to validate the practical application ability of the well-trained ML models in a laboratory with two ensemble models managing the prediction. Discussion: Thus, our results demonstrate that ML-based high-throughput theoretical calculation could be used to predict and decode the relationship between CD properties and the anti-bacterial effect, accelerating the development of high-performance nanoparticles and potential clinical translation.


Asunto(s)
Antibacterianos , Carbono , Aprendizaje Automático , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/química , Carbono/química , Carbono/farmacología , Puntos Cuánticos/química , Humanos , Polilisina/química , Polilisina/farmacología , Algoritmos
3.
Artículo en Inglés | MEDLINE | ID: mdl-37252871

RESUMEN

Although deep learning (DL) techniques have been extensively researched in upper-limb myoelectric control, system robustness in cross-day applications is still very limited. This is largely caused by non-stable and time-varying properties of surface electromyography (sEMG) signals, resulting in domain shift impacts on DL models. To this end, a reconstruction-based method is proposed for domain shift quantification. Herein, a prevalent hybrid framework that combines a convolutional neural network (CNN) and a long short-term memory network (LSTM), i.e. CNN-LSTM, is selected as the backbone. The paring of auto-encoder (AE) and LSTM, abbreviated as LSTM-AE, is proposed to reconstruct CNN features. Based on reconstruction errors (RErrors) of LSTM-AE, domain shift impacts on CNN-LSTM can be quantified. For a thorough investigation, experiments were conducted in both hand gesture classification and wrist kinematics regression, where sEMG data were both collected in multi-days. Experiment results illustrate that, when the estimation accuracy degrades substantially in between-day testing sets, RErrors increase accordingly and can be distinct from those obtained in within-day datasets. According to data analysis, CNN-LSTM classification/regression outcomes are strongly associated with LSTM-AE errors. The average Pearson correlation coefficients could reach -0.986 ± 0.014 and -0.992 ± 0.011, respectively.


Asunto(s)
Memoria a Largo Plazo , Redes Neurales de la Computación , Humanos , Electromiografía/métodos , Movimiento (Física) , Extremidad Superior
4.
IEEE J Biomed Health Inform ; 26(8): 3822-3835, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35294368

RESUMEN

To develop multi-functionalhuman-machine interfaces that can help disabled people reconstruct lost functions of upper-limbs, machine learning (ML) and deep learning (DL) techniques have been widely implemented to decode human movement intentions from surface electromyography (sEMG) signals. However, due to the high complexity of upper-limb movements and the inherent non-stable characteristics of sEMG, the usability of ML/DL based control schemes is still greatly limited in practical scenarios. To this end, tremendous efforts have been made to improve model robustness, adaptation, and reliability. In this article, we provide a systematic review on recent achievements, mainly from three categories: multi-modal sensing fusion to gain additional information of the user, transfer learning (TL) methods to eliminate domain shift impacts on estimation models, and post-processing approaches to obtain more reliable outcomes. Special attention is given to fusion strategies, deep TL frameworks, and confidence estimation. Research challenges and emerging opportunities, with respect to hardware development, public resources, and decoding strategies, are also analysed to provide perspectives for future developments.


Asunto(s)
Miembros Artificiales , Aprendizaje Profundo , Electromiografía/métodos , Humanos , Aprendizaje Automático , Movimiento , Reproducibilidad de los Resultados , Extremidad Superior
5.
Artículo en Inglés | MEDLINE | ID: mdl-34086574

RESUMEN

Recently, convolutional neural network (CNN) has been widely investigated to decode human intentions using surface Electromyography (sEMG) signals. However, a pre-trained CNN model usually suffers from severe degradation when testing on a new individual, and this is mainly due to domain shift where characteristics of training and testing sEMG data differ substantially. To enhance inter-subject performances of CNN in the wrist kinematics estimation, we propose a novel regression scheme for supervised domain adaptation (SDA), based on which domain shift effects can be effectively reduced. Specifically, a two-stream CNN with shared weights is established to exploit source and target sEMG data simultaneously, such that domain-invariant features can be extracted. To tune CNN weights, both regression losses and a domain discrepancy loss are employed, where the former enable supervised learning and the latter minimizes distribution divergences between two domains. In this study, eight healthy subjects were recruited to perform wrist flexion-extension movements. Experiment results illustrated that the proposed regression SDA outperformed fine-tuning, a state-of-the-art transfer learning method, in both single-single and multiple-single scenarios of kinematics estimation. Unlike fine-tuning which suffers from catastrophic forgetting, regression SDA can maintain much better performances in original domains, which boosts the model reusability among multiple subjects.


Asunto(s)
Redes Neurales de la Computación , Muñeca , Fenómenos Biomecánicos , Electromiografía , Humanos , Articulación de la Muñeca
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA