Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Data Brief ; 53: 110077, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38328281

RESUMEN

Amygdalus species have considerable ecological and economic value, however, the phylogenetic relationships among Amygdalus remain controversy. In this study, we sequenced and assembled the chloroplast (cp) genomes of five Amygdalus species: Prunus communis, P. mongolica, P. pedunculata, P. triloba, and P. mira. We then conducted comparative genomic analyses and constructed their phylogenetic relationships. The genome length ranged from 157,870 to 158,451 bp, and 131 genes were annotated (86 protein-coding genes, 37 tRNAs, and 8 rRNAs). Additionally, 49-57 simple sequence repeats were detected, with most in the large single-copy region and with AT base preferences. Comparative genomic analyses revealed high similarities in structure, order, and gene content. However, we identified four highly divergent sequences: trnR-UCU-atpA, nbdhC-trnV-UAC, ycf4-cemA, and rpl32-trnL-UAG. The phylogenomic relationship analysis suggested that the Amygdalus species were grouped together, in which P. pedunculata, P. triloba, and Prunus tangutica were categorized into a branch, P. mongolica and Prunus davidiana were clustered a branch. This study provides an improved understanding of the genetic relationships among the Amygdalus and provides a basis for the development and utilization of Amygdalus resources.

2.
Genes (Basel) ; 14(10)2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37895308

RESUMEN

The production and quality of apricots in China is currently limited by the availability of germplasm resource characterizations, including identification at the species and cultivar level. To help address this issue, the complete chloroplast genomes of Prunus armeniaca L., P. sibirica L. and kernel consumption apricot were sequenced, characterized, and phylogenetically analyzed. The three chloroplast (cp) genomes ranged from 157,951 to 158,224 bp, and 131 genes were identified, including 86 protein-coding genes, 37 rRNAs, and 8 tRNAs. The GC content ranged from 36.70% to 36.75%. Of the 170 repetitive sequences detected, 42 were shared by all three species, and 53-57 simple sequence repeats were detected with AT base preferences. Comparative genomic analysis revealed high similarity in overall structure and gene content as well as seven variation hotspot regions, including psbA-trnK-UUU, rpoC1-rpoB, rpl32-trnL-UAG, trnK-rps16, ndhG-ndhI, ccsA-ndhD, and ndhF-trnL. Phylogenetic analysis showed that the three apricot species clustered into one group, and the genetic relationship between P. armeniaca and kernel consumption apricot was the closest. The results of this study provide a theoretical basis for further research on the genetic diversity of apricots and the development and utilization of molecular markers for the genetic engineering and breeding of apricots.


Asunto(s)
Genoma del Cloroplasto , Prunus armeniaca , Prunus armeniaca/genética , Genómica/métodos , Filogenia , Fitomejoramiento
3.
Curr Issues Mol Biol ; 45(7): 5232-5247, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37504248

RESUMEN

Picea mongolica is a rare tree species in China, which is of great significance in combating desertification and improving the harsh ecological environment. Due to the low rate of natural regeneration, high mortality, and susceptibility to pests and cold springs, Picea mongolica has gradually become extinct. At present, somatic embryogenesis (SE) is the most effective method of micro-proliferation in conifers, but the induction rate of embryogenic callus (EC) is low, and EC is difficult to differentiate from non-embryonic callus (NEC). Therefore, the EC and NEC of Picea mongolica were compared from the morphology, histological, physiological, and transcriptional levels, respectively. Morphological observation showed that the EC was white and transparent filamentous, while the NEC was compact and brownish-brown lumpy. Histological analyses showed that the NEC cells were large and loosely arranged; the nuclei attached to the edge of the cells were small; the cytoplasm was low; and the cell gap was large and irregular. In the EC, small cells, closely arranged cells, and a large nucleus and nucleolus were observed. Physiological studies showed significant differences in ROS-scavenging enzymes between the EC and NEC. Transcriptome profiling revealed that 13,267 differentially expressed genes (DEGs) were identified, 3682 were up-regulated, and 9585 were down-regulated. In total, 63 GO terms had significant enrichment, 32 DEGs in plant hormone signal transduction pathway were identified, and 502 different transcription factors (TFs) were characterized into 38 TF families. Meanwhile, we identified significant gene expression trends associated with somatic embryo development in plant hormones (AUX/IAA, YUCCA, LEA, etc.), stress (GST, HSP, GLP, etc.), phenylpropanoid metabolism (4CL, HCT, PAL, etc.), and transcription factors (AP2/ERF, MYB, WOX, etc.). In addition, nine genes were chosen for RT-qPCR, and the results were consistent with RNA-Seq data. This study revealed the changes in morphology, histology, physiology, and gene expression in the differentiation of NEC into EC and laid the foundation for finding the key genes to promote EC formation.

4.
BMC Plant Biol ; 21(1): 152, 2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33761884

RESUMEN

BACKGROUND: Prunus pedunculata Pall, the deciduous shrub of Amygdalus subgenus in Rosaceae, is a new kind of desert oil-bearing tree. It has a long story of being planted in the West and North of China for sand fixation and desert control. In addition, the seeds of P. pedunculata are rich of oil, especially the monounsaturated fatty acid and polyunsaturated fatty acid. However, little is known about the molecular mechanisms of oil accumulation during the seed development of P. pedunculata. RESULTS: The seeds of P. pedunculata from three independent plants at 10, 18, 24, 31, 39, 45, 59 and 73 days after flowering (DAF) were obtained and the oil compositions were evaluated. It showed that oleic acid was the dominant type of oil content in the mature seeds (from 32.724% at 10DAF to 72.06% at 73DAF). Next, transcriptome sequencing for the developing seeds produced 988.795 million high quality reads and TRINITY assembled 326,271 genes for the first transcriptome for P. pedunculata. After the assembled transcriptome was evaluated by BUSCO with 85.9% completeness, we identified 195,342, 109,850 and 121,897 P. pedunculata genes aligned to NR, GO and KEGG pathway databases, respectively. Then, we predicted 23,229 likely proteins from the assembled transcriptome and identified 1917 signal peptides and 5512 transmembrane related proteins. In the developing seeds we detected 91,362 genes (average FPKM > 5) and correlation analysis indicated three possible development stages - early (10 ~ 24DAF), middle (31 ~ 45DAF) and late (59 ~ 73DAF). We next analyzed the differentially expressed genes (DEGs) in the developing seeds. Interestingly, compared to 10DAF the number of DEGs was increased from 4406 in 18DAF to 27,623 in 73DAF. Based on the gene annotation, we identified 753, 33, 8 and 645 DEGs related to the fatty acid biosynthesis, lipid biosynthesis, oil body and transcription factors. Notably, GPAT, DGD1, LACS2, UBC and RINO were highly expressed at the early development stage, ω6-FAD, SAD, ACP, ACCA and AHG1 were highly expressed at the middle development stage, and LACS6, DGD1, ACAT1, AGPAT, WSD1, EGY2 and oleosin genes were highly expressed at the late development stage. CONCLUSIONS: This is the first time to study the developing seed transcriptome of P. pedunculata and our findings will provide a valuable resource for future studies. More importantly, it will improve our understanding of molecular mechanisms of oil accumulation in P. pedunculata.


Asunto(s)
Ácidos Grasos/biosíntesis , Genes de Plantas , Prunus/genética , Semillas/genética , Ácidos Grasos/genética , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Metabolismo de los Lípidos , Anotación de Secuencia Molecular , Aceites de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Señales de Clasificación de Proteína , Prunus/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Semillas/metabolismo , Factores de Transcripción/metabolismo
5.
Front Plant Sci ; 12: 802827, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35145534

RESUMEN

Freezing during the flowering of Prunus sibirica is detrimental to fruit production. The late flowering (LF) type, which is delayed by 7-15 days compared with the normal flowering (NF) type, avoids damages at low temperature, but the molecular mechanism of LF remains unclear. Therefore, this study was conducted to comprehensively characterize floral bud differentiation. A histological analysis showed that initial floral bud differentiation was delayed in the LF type compared to the NF type. Genome-wide associated studies (GWAS) showed that a candidate gene (PaF106G0600023738.01) was significantly associated with LF type. It was identified as trehalose-6-phosphate phosphatase (PsTPPF), which is involved in trehalose-6-phosphate (Tre6P) signaling pathway and acts on floral transition. A whole-transcriptome RNA sequencing analysis was conducted, and a total of 6,110 differential expression (DE) mRNAs, 1,351 DE lncRNAs, and 148 DE miRNAs were identified. In addition, 24 DE mRNAs related with floral transition were predicted, and these involved the following: three interactions between DE lncRNAs and DE mRNAs of photoperiod pathway with two mRNAs (COP1, PaF106G0400018289.01 and CO3, MXLOC_025744) and three lncRNAs (CCLR, LTCONS_00031803, COCLR1, LTCONS_00046726, and COCLR2, LTCONS_00046731); one interaction between DE miRNAs and DE mRNAs with one mRNA, encoding trehalose-6-phosphate synthase (PsTPS1, PaF106G0100001132.01), and one miRNA (miRNA167h). Combined with the expression profiles and Tre6P levels, functions of PsTPPF and PsTPS1 in Tre6P regulation were considered to be associated with flowering time. A new network of ceRNAs correlated with LF was constructed, and it consisted of one mRNA (PsTPS1), one lncRNA (TCLR, LTCONS_00034157), and one miRNA (miR167h). This study provided insight into the molecular regulatory mechanism of LF in Prunus sibirica.

6.
Mitochondrial DNA B Resour ; 4(2): 3731-3733, 2019 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-33366164

RESUMEN

Prunus mira Koehne belonging to family Rosaceae, is an indigenous species distributed in Tibet, China. De novo assembly with low coverage whole genome sequencing data facilitated to generate the complete chloroplast (cp) genome of P. mira in this study. The genome was a circular DNA molecule with 158,153 bp in length. It exhibited a typical quadripartite structure comprising a large single-copy region (LSC, 86,319 bp), a small single-copy region (SSC, 19,022 bp) and a pair of inverted repeat regions (IRs, 26,406 bp each). A total of 112 genes were predicted, which included 78 protein-coding genes, 30 tRNA genes, and 4 rRNA genes. Phylogenetic analysis indicated that P. mira was the most ancestral and basal lineage within the subgenus Amygdalus (Prunoideae subfamily), which is conform to the traditional classification.

7.
Mol Plant ; 11(3): 429-442, 2018 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-29229569

RESUMEN

Eucommia ulmoides, also called hardy rubber tree, is an economically important tree; however, the lack of its genome sequence restricts the fundamental biological research and applied studies of this plant species. Here, we present a high-quality assembly of its ∼1.2-Gb genome (scaffold N50 = 1.88 Mb) with at least 26 723 predicted genes for E. ulmoides, the first sequenced genome of the order Garryales, which was obtained using an integrated strategy combining Illumina sequencing, PacBio sequencing, and BioNano mapping. As a sister taxon to lamiids and campanulids, E. ulmoides underwent an ancient genome triplication shared by core eudicots but no further whole-genome duplication in the last ∼125 million years. E. ulmoides exhibits high expression levels and/or gene number expansion for multiple genes involved in stress responses and the biosynthesis of secondary metabolites, which may account for its considerable environmental adaptability. In contrast to the rubber tree (Hevea brasiliensis), which produces cis-polyisoprene, E. ulmoides has evolved to synthesize long-chain trans-polyisoprene via farnesyl diphosphate synthases (FPSs). Moreover, FPS and rubber elongation factor/small rubber particle protein gene families were expanded independently from the H. brasiliensis lineage. These results provide new insights into the biology of E. ulmoides and the origin of polyisoprene biosynthesis.


Asunto(s)
Genoma de Planta/genética , Hemiterpenos/metabolismo , Hevea/genética , Hevea/metabolismo , Filogenia , Proteínas de Plantas/genética
8.
PLoS One ; 12(11): e0188685, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29186199

RESUMEN

Prunus mira Koehne, an important economic fruit crop with high breeding and medicinal values, and an ancestral species of many cultivated peach species, has recently been declared an endangered species. However, basic information about genetic diversity, population structure, and morphological variation is still limited for this species. In this study, we sampled 420 P. mira individuals from 21 wild populations in the Tibet plateau to conduct a comprehensive analysis of genetic and morphological characteristics. The results of molecular analyses based on simple sequence repeat (SSR) markers indicated moderate genetic diversity and inbreeding (A = 3.8, Ae = 2.5, He = 0.52, Ho = 0.44, I = 0.95, FIS = 0.17) within P. mira populations. STRUCTURE, GENELAND, and phylogenetic analyses assigned the 21 populations to three genetic clusters that were moderately correlated with geographic altitudes, and this may have resulted from significantly different climatic and environmental factors at different altitudinal ranges. Significant isolation-by-distance was detected across the entire distribution of P. mira populations, but geographic altitude might have more significant effects on genetic structure than geographic distance in partial small-scale areas. Furthermore, clear genetic structure, high genetic differentiation, and restricted gene flow were detected between pairwise populations from different geographic groups, indicating that geographic barriers and genetic drift have significant effects on P. mira populations. Analyses of molecular variance based on the SSR markers indicated high variation (83.7% and 81.7%), whereas morphological analyses revealed low variation (1.30%-36.17%) within the populations. Large and heavy fruits were better adapted than light fruits and nutlets to poor climate and environmental conditions at high altitudes. Based on the results of molecular and morphological analyses, we classified the area into three conservation units and proposed several conservation strategies for wild P. mira populations in the Tibet plateau.


Asunto(s)
Conservación de los Recursos Naturales , Productos Agrícolas/genética , Variación Genética , Prunus/genética , ADN de Plantas/genética , Marcadores Genéticos , Repeticiones de Microsatélite , Tibet
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...