Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Travel Med Infect Dis ; 57: 102684, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38159875

RESUMEN

BACKGROUND: The effectiveness of artemisinin-based combination therapies (ACT) in treating Plasmodium falciparum, is vital for global malaria control efforts, particularly in sub-Saharan Africa. The examination of imported cases from endemic areas holds implications for malaria chemotherapy on a global scale. METHOD: A 45-year-old male presented with high fever, dry cough, diarrhoea and generalized muscle pain, following a two-week trip to Mozambique. P. falciparum infection with hiperparasitemia was confirmed and the patient was treated initially with quinine and doxycycline, then intravenous artesunate. To assess drug susceptibility, ex vivo half-maximal inhibitory concentration assays were conducted, and the isolated P. falciparum genome was deep sequenced. RESULTS: The clinical isolate exhibited elevated ex vivo half-maximal inhibitory concentration values to dihydroartemisinin, lumefantrine, mefloquine and piperaquine. Genomic analysis identified a I416V mutation in the P. falciparum Kelch13 (PF3D7_1343700) gene, and several mutations at the Kelch13 interaction candidate genes, pfkics (PF3D7_0813000, PF3D7_1138700, PF3D7_1246300), including the ubiquitin carboxyl-terminal hydrolase 1, pfubp1 (PF3D7_0104300). Mutations at the drug transporters and genes linked to next-generation antimalarial drug resistance were also present. CONCLUSIONS: This case highlights the emergence of P. falciparum strains carrying mutations in artemisinin resistance-associated genes in Mozambique, couple with a reduction in ex vivo susceptibility to ACT drugs. Continuous surveillance of mutations linked to drug resistance and regular monitoring of drug susceptibility are imperative to anticipate the spread of potential resistant strains emerging in Mozambique and to maintain effective malaria control strategies.


Asunto(s)
Antimaláricos , Artemisininas , Malaria Falciparum , Malaria , Masculino , Humanos , Persona de Mediana Edad , Plasmodium falciparum , Mozambique , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Malaria/tratamiento farmacológico , Malaria Falciparum/tratamiento farmacológico , Artemisininas/farmacología , Artemisininas/uso terapéutico , Resistencia a Medicamentos/genética , Mutación
2.
IEEE Trans Biomed Eng ; 70(8): 2318-2328, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37022426

RESUMEN

OBJECTIVES: Optical spectrophotometry has been explored to quantify Plasmodium falciparum malaria parasites at low parasitemia, with potential to overcome the limitations of detection in the current diagnostic methods. This work presents the design, simulation and fabrication of a CMOS microelectronic detection system to automatically quantify the presence of malaria parasites in a blood sample. METHODS: The designed system is composed by an array of 16 n+/p-substrate silicon junction photodiodes as photodetectors and 16 current to frequency (IF) converters. An optical setup was used to individually and jointly characterize the entire system. RESULTS: The IF converter was simulated and characterized in Cadence Tools using UMC 1180 MM/RF technology rules, featuring a resolution of 0.01 nA, a linearity up to 1800 nA and a sensitivity of 4430 Hz/nA. After fabrication in a silicon foundry, the photodiodes' characterization presented a responsivity peak of 120 mA/W (λ = 570 nm) and a dark current of 7.15 pA at 0 V. Regarding the IF converter, it exhibited high linearity (R2 ≈ 0.999) up to 30 nA, with a sensitivity of 4840 Hz/nA. Furthermore, the microsystem performance was validated using RBCs (Red Blood Cells) infected with P. falciparum and diluted at different parasitemia (12, 25 and 50 parasites/µL). CONCLUSION: The microsystem was able to distinguish between healthy and infected RBCs, with a sensitivity of 4.5 Hz/parasites.µL-1. SIGNIFICANCE: The developed microsystem presents a competitive result, when compared to the gold standard diagnosis methods, with increased potential for malaria in field diagnosis.


Asunto(s)
Malaria Falciparum , Malaria , Humanos , Plasmodium falciparum , Silicio , Parasitemia/diagnóstico , Parasitemia/parasitología , Malaria/diagnóstico , Malaria Falciparum/diagnóstico , Malaria Falciparum/parasitología , Espectrofotometría , Sensibilidad y Especificidad
3.
ACS Infect Dis ; 9(1): 140-149, 2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36490289

RESUMEN

Malaria is one of the most life-threatening infectious diseases worldwide, claiming half a million lives yearly. Prompt and accurate diagnosis is crucial for disease control and elimination. Currently used diagnostic methods require blood sampling and fail to detect low-level infections. At the symptomatic stage of infection, the parasites feed on red blood cells' (RBCs) hemoglobin, forming inert crystals, the hemozoin, in the process. Thus, along with parasite maturation inside the RBCs, the hemoglobin and hemozoin proportion is inversely related, and they generate specific optical spectra, according to their concentration. Herein, to address the issues of finger prick sampling and the lack of sensitivity of the parasitological test, we explored the optical features of Plasmodium falciparum-infected RBCs through absorbance and reflectance spectrophotometric characterization, aiming for their detection. This is the first work fully characterizing the spectrophotometric properties of P. falciparum-infected RBCs by using only 16 specific wavelengths within the visible optical spectra and two different post-processing algorithms. With such an innovative methodology, low-level infections can be detected and quantified, and early- and late-stage development can be clearly distinguished, not only improving the current detection limits but also proving the successful applicability of spectrophotometry for competitive and accurate malaria diagnosis.


Asunto(s)
Malaria Falciparum , Malaria , Parásitos , Animales , Plasmodium falciparum , Malaria Falciparum/diagnóstico , Malaria Falciparum/parasitología , Malaria/parasitología , Espectrofotometría
4.
Apoptosis ; 27(5-6): 368-381, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35362903

RESUMEN

Proteins of the Bcl-2 protein family, including pro-apoptotic Bax and anti-apoptotic Bcl-xL, are critical for mitochondrial-mediated apoptosis regulation. Since yeast lacks obvious orthologs of Bcl-2 family members, heterologous expression of these proteins has been used to investigate their molecular and functional aspects. Active Bax is involved in the formation of mitochondrial outer membrane pores, through which cytochrome c (cyt c) is released, triggering a cascade of downstream apoptotic events. However, when in its inactive form, Bax is largely cytosolic or weakly bound to mitochondria. Given the central role of Bax in apoptosis, studies aiming to understand its regulation are of paramount importance towards its exploitation as a therapeutic target. So far, studies taking advantage of heterologous expression of human Bax in yeast to unveil regulation of Bax activation have relied on the use of artificial mutated or mitochondrial tagged Bax for its activation, rather than the wild type Bax (Bax α). Here, we found that cell death could be triggered in yeast cells heterologoulsy expressing Bax α with concentrations of acetic acid that are not lethal to wild type cells. This was associated with Bax mitochondrial translocation and cyt c release, closely resembling the natural Bax function in the cellular context. This regulated cell death process was reverted by co-expression with Bcl-xL, but not with Bcl-xLΔC, and in the absence of Rim11p, the yeast ortholog of mammalian GSK3ß. This novel system mimics human Bax α regulation by GSK3ß and can therefore be used as a platform to uncover novel Bax regulators and explore its therapeutic modulation.


Asunto(s)
Citocromos c , Saccharomyces cerevisiae , Ácido Acético , Animales , Apoptosis/genética , Proteínas Portadoras , Citocromos c/genética , Citocromos c/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Mamíferos/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo , Proteína bcl-X/genética , Proteína bcl-X/metabolismo
5.
Biosensors (Basel) ; 12(2)2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35200370

RESUMEN

Despite being preventable and treatable, malaria still puts almost half of the world's population at risk. Thus, prompt, accurate and sensitive malaria diagnosis is crucial for disease control and elimination. Optical microscopy and immuno-rapid tests are the standard malaria diagnostic methods in the field. However, these are time-consuming and fail to detect low-level parasitemia. Biosensors and lab-on-a-chip devices, as reported to different applications, usually offer high sensitivity, specificity, and ease of use at the point of care. Thus, these can be explored as an alternative for malaria diagnosis. Alongside malaria infection inside the human red blood cells, parasites consume host hemoglobin generating the hemozoin crystal as a by-product. Hemozoin is produced in all parasite species either in symptomatic and asymptomatic individuals. Furthermore, hemozoin crystals are produced as the parasites invade the red blood cells and their content relates to disease progression. Hemozoin is, therefore, a unique indicator of infection, being used as a malaria biomarker. Herein, the so-far developed biosensors and lab-on-a-chip devices aiming for malaria detection by targeting hemozoin as a biomarker are reviewed and discussed to fulfil all the medical demands for malaria management towards elimination.


Asunto(s)
Hemoproteínas , Malaria , Biomarcadores , Eritrocitos/parasitología , Eritrocitos/fisiología , Hemoproteínas/metabolismo , Humanos , Malaria/sangre , Malaria/diagnóstico , Malaria/parasitología
6.
ACS Sens ; 6(11): 3898-3911, 2021 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-34735120

RESUMEN

Early and effective malaria diagnosis is vital to control the disease spread and to prevent the emergence of severe cases and death. Currently, malaria diagnosis relies on optical microscopy and immuno-rapid tests; however, these require a drop of blood, are time-consuming, or are not specific and sensitive enough for reliable detection of low-level parasitaemia. Thus, there is an urge for simpler, prompt, and accurate alternative diagnostic methods. Particularly, hemozoin has been increasingly recognized as an attractive biomarker for malaria detection. As the disease proliferates, parasites digest host hemoglobin, in the process releasing toxic haem that is detoxified into an insoluble crystal, the hemozoin, which accumulates along with infection progression. Given its magnetic, optical, and acoustic unique features, hemozoin has been explored for new label-free diagnostic methods. Thereby, herein, we review the hemozoin-based malaria detection methods and critically discuss their challenges and potential for the development of an ideal diagnostic device.


Asunto(s)
Hemoproteínas , Malaria , Hemo , Humanos , Malaria/diagnóstico , Microscopía
7.
Micromachines (Basel) ; 12(8)2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34442510

RESUMEN

Malaria diagnosis relies on optical microscopy and/or rapid diagnostic tests based on detecting specific malaria antigens. The clinical sensitivity of these methods is highly dependent on parasite density, with low levels of detection at low parasite density, challenging the worldwide malaria elimination efforts. Therefore, there is a need for diagnostic methods with higher sensitivity, demanding innovative diagnostics devices able to detect malaria at low parasite density and at early stages of the disease. We propose an innovative optical device for malaria diagnosis, based on optical reflectance spectrophotometry, for the detection of parasites through the quantification of haemozoin. For this purpose, a set of eight thin-film optical filters, based on multilayer stacks of MgO/TiO2 and SiO2/TiO2 thin-films, with high transmittance and low full width at half maximum (FWHM) at specific wavelengths, was designed and fully characterized (both numerically and experimentally). A preliminary assessment of its potential to reconstruct the original spectra of red blood cells was performed, both in uninfected and Plasmodium falciparum-infected samples. The obtained results show that, although the experimental filters have a non-ideal performance characteristic, they allow us to distinguish, based on only 8 discrete points in the optical spectrum, between healthy and malaria infected samples, up to a detection limit of 12 parasites/µL of red blood cells. Those results enhance the potential of using such a device for malaria diagnostics, aiming for non-invasiveness.

8.
mBio ; 11(6)2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33262257

RESUMEN

Artemisinin-based combination therapies (ACTs) have been vital in reducing malaria mortality rates since the 2000s. Their efficacy, however, is threatened by the emergence and spread of artemisinin resistance in Southeast Asia. The Plasmodium falciparum multidrug resistance protein 1 (PfMDR1) transporter plays a central role in parasite resistance to ACT partner drugs through gene copy number variations (CNV) and/or single nucleotide polymorphisms (SNPs). Using genomic epidemiology, we show that multiple pfmdr1 copies encoding the N86 and 184F haplotype are prevalent across Southeast Asia. Applying genome editing tools on the Southeast Asian Dd2 strain and using a surrogate assay to measure transporter activity in infected red blood cells, we demonstrate that parasites harboring multicopy N86/184F PfMDR1 have a higher Fluo-4 transport capacity compared with those expressing the wild-type N86/Y184 haplotype. Multicopy N86/184F PfMDR1 is also associated with decreased parasite susceptibility to lumefantrine. These findings provide evidence of the geographic selection and expansion of specific multicopy PfMDR1 haplotypes associated with multidrug resistance in Southeast Asia.IMPORTANCE Global efforts to eliminate malaria depend on the continued success of artemisinin-based combination therapies (ACTs) that target Plasmodium asexual blood-stage parasites. Resistance to ACTs, however, has emerged, creating the need to define the underlying mechanisms. Mutations in the P. falciparum multidrug resistance protein 1 (PfMDR1) transporter constitute an important determinant of resistance. Applying gene editing tools combined with an analysis of a public database containing thousands of parasite genomes, we show geographic selection and expansion of a pfmdr1 gene amplification encoding the N86/184F haplotype in Southeast Asia. Parasites expressing this PfMDR1 variant possess a higher transport capacity that modulates their responses to antimalarials. These data could help tailor and optimize antimalarial drug usage in different regions where malaria is endemic by taking into account the regional prevalence of pfmdr1 polymorphisms.


Asunto(s)
Haplotipos , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Plasmodium falciparum/genética , Alelos , Asia Sudoriental/epidemiología , Variaciones en el Número de Copia de ADN , Resistencia a Medicamentos , Amplificación de Genes , Variación Genética , Geografía Médica , Humanos , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...