Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; 10(2): e0217621, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35285705

RESUMEN

In this report, we describe the development of a reverse transcription-quantitative PCR (RT-qPCR) assay, termed Alpha-Delta assay, which can detect all severe acute respiratory syndrome coronavirus 2 (SC-2) variants and distinguish between the Alpha (B.1.1.7) and Delta (B.1.617.2) variants. The Alpha- and Delta-specific reactions in the assay target mutations that are strongly linked to the target variant. The Alpha reaction targets the D3L substitution in the N gene, and the Delta reaction targets the spike gene 156 to 158 mutations. Additionally, we describe a second Delta-specific assay that we use as a confirmatory test for the Alpha-Delta assay that targets the 119 to 120 deletion in the Orf8 gene. Both reactions have similar sensitivities of 15 to 25 copies per reaction, similar to the sensitivity of commercial SC-2 detection tests. The Alpha-Delta assay and the Orf8119del assay were successfully used to classify clinical samples that were subsequently analyzed by whole-genome sequencing. Lastly, the capability of the Alpha-Delta assay and Orf8119del assay to identify correctly the presence of Delta RNA in wastewater samples was demonstrated. This study provides a rapid, sensitive, and cost-effective tool for detecting and classifying two worldwide dominant SC-2 variants. It also highlights the importance of a timely diagnostic response to the emergence of new SC-2 variants with significant consequences on global health. IMPORTANCE The new assays described herein enable rapid, straightforward, and cost-effective detection of severe acute respiratory syndrome coronavirus 2 (SC-2) with immediate classification of the examined sample as Alpha, Delta, non-Alpha, or non-Delta variant. This is highly important for two main reasons: (i) it provides the scientific and medical community with a novel diagnostic tool to rapidly detect and classify any SC-2 sample of interest as Alpha, Delta, or none and can be applied to both clinical and environmental samples, and (ii) it demonstrates how to respond to the emergence of new variants of concern by developing a variant-specific assay. Such assays should improve our preparedness and adjust the diagnostic capacity to serve clinical, epidemiological, and research needs.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa , SARS-CoV-2/genética , Secuenciación Completa del Genoma
2.
Euro Surveill ; 26(45)2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34763751

RESUMEN

The SARS-CoV-2 Lambda (Pango lineage designation C.37) variant of interest, initially identified in Peru, has spread to additional countries. First detected in Israel in April 2021 following importations from Argentina and several European countries, the Lambda variant infected 18 individuals belonging to two main transmission chains without further spread. Micro-neutralisation assays following Comirnaty (BNT162b2 mRNA, BioNTech-Pfizer) vaccination demonstrated a significant 1.6-fold reduction in neutralising titres compared with the wild type virus, suggesting increased susceptibility of vaccinated individuals to infection.


Asunto(s)
COVID-19 , SARS-CoV-2 , Vacuna BNT162 , Vacunas contra la COVID-19 , Humanos , Israel/epidemiología , Vacunación
3.
Microbiol Spectr ; 9(2): e0050621, 2021 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-34612692

RESUMEN

Emerging SARS-CoV-2 (SC-2) variants with increased infectivity and vaccine resistance are of major concern. Rapid identification of such variants is important for the public health decision making and to provide valuable data for epidemiological and policy decision making. We developed a multiplex reverse transcriptase quantitative PCR (RT-qPCR) assay that can specifically identify and differentiate between the emerging B.1.1.7 and B.1.351 SC-2 variants. In a single assay, we combined four reactions-one that detects SC-2 RNA independently of the strain, one that detects the D3L mutation, which is specific to variant B.1.1.7, one that detects the 242 to 244 deletion, which is specific to variant B.1.351, and the fourth reaction, which identifies the human RNAseP gene, serving as an endogenous control for RNA extraction integrity. We show that the strain-specific reactions target mutations that are strongly associated with the target variants and not with other major known variants. The assay's specificity was tested against a panel of respiratory pathogens (n = 16), showing high specificity toward SC-2 RNA. The assay's sensitivity was assessed using both in vitro transcribed RNA and clinical samples and was determined to be between 20 and 40 viral RNA copies per reaction. The assay performance was corroborated with Sanger and whole-genome sequencing, showing complete agreement with the sequencing results. The new assay is currently implemented in the routine diagnostic work at the Central Virology Laboratory, and may be used in other laboratories to facilitate the diagnosis of these major worldwide-circulating SC-2 variants. IMPORTANCE This study describes the design and utilization of a multiplex reverse transcriptase quantitative PCR (RT-qPCR) to identify SARS-COV-2 (SC2) RNA in general and, specifically, to detect whether it is of lineage B.1.1.7 or B.1.351. Implementation of this method in diagnostic and research laboratories worldwide may help the efforts to contain the COVID-19 pandemic. The method can be easily scaled up and be used in high-throughput laboratories, as well as small ones. In addition to immediate help in diagnostic efforts, this method may also help in epidemiological studies focused on the spread of emerging SC-2 lineages.


Asunto(s)
COVID-19/diagnóstico , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , SARS-CoV-2/clasificación , SARS-CoV-2/genética , COVID-19/epidemiología , COVID-19/virología , Genoma Viral/genética , Humanos , Israel/epidemiología , ARN Viral/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , SARS-CoV-2/inmunología , SARS-CoV-2/aislamiento & purificación , Sensibilidad y Especificidad , Secuenciación Completa del Genoma
4.
Vaccines (Basel) ; 9(8)2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34452062

RESUMEN

Emerging SARS-CoV-2 variants may threaten global vaccination efforts and the awaited reduction in outbreak burden. In this study, we report a novel variant carrying the L452R mutation that emerged from a local B.1.362 lineage, B.1.362+L452R. The L452R mutation is associated with the Delta and Epsilon variants and was shown to cause increased infection and reduction in neutralization in pseudoviruses. Indeed, the B.1.362+L452R variant demonstrated a X4-fold reduction in neutralization capacity of sera from BNT162b2-vaccinated individuals compared to a wild-type strain. The variant infected 270 individuals in Israel between December 2020 and March 2021, until diminishing due to the gain in dominance of the Alpha variant in February 2021. This study demonstrates an independent, local emergence of a variant carrying a critical mutation, L452R, which may have the potential of becoming a variant of concern and emphasizes the importance of routine surveillance and detection of novel variants among efforts undertaken to prevent further disease spread.

5.
Vaccines (Basel) ; 9(6)2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34201088

RESUMEN

The routine detection, surveillance, and reporting of novel SARS-CoV-2 variants is crucial, as these threaten to hinder global vaccination efforts. Herein we report a novel local variant with a non-synonymous mutation in the spike (S) protein P681H. This local Israeli variant was not associated with a higher infection rate or higher prevalence. Furthermore, the local variant was successfully neutralized by sera from fully vaccinated individuals at a comparable level to the B.1.1.7 variant and an Israel wild-type strain. While it is not a variant of concern, routine monitoring by sequencing is still required.

6.
Sci Total Environ ; 789: 148002, 2021 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-34323811

RESUMEN

Investigation of SARS-CoV-2 spread and identification of variants in sewers has been demonstrated to accurately detect prevalence of viral strains and is advantageous to clinical sampling in population catchment size. Herein, we utilized an established nationwide system of wastewater sampling and viral concentration approaches to perform large-scale surveillance of SARS-CoV-2 variants in nine different locations across Israel that were sampled from August 2020 to February 2021 and sequenced (n = 58). Viral sequences obtained from the wastewater samples had high coverages of the genome, and mutation analyses successfully identified the penetration of the B.1.1.7 variant into Israel in December 2020 in the central and north regions, and its spread into additional regions in January and February 2021, corresponding with clinical sampling results. Moreover, the wastewater analysis identified the B.1.1.7 variant in December 2020 in regions in which non-sufficient clinical sampling was available. Other variants of concern examined, including P.1 (Brazil/Manaus), B.1.429 (USA/California), B.1.526 (USA/New York), A.23.1 (Uganda) and B.1.525 (Unknown origin), did not show consistently elevated frequencies. This study exemplifies that surveillance by sewage is a robust approach which allows to monitor the diversity of SARS-CoV-2 strains circulating in the community. Most importantly, this approach can pre-identify the emergence of epidemiologically or clinically relevant mutations/variants, aiding in public health decision making.

7.
Glob Health Promot ; 28(3): 41-49, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33446052

RESUMEN

The World Health Organization's Healthy Cities Network (HCN) enlists community stakeholders (residents, businesses, non-governmental organizations and municipal governments) to promote health, quality of life and sustainable development in urban settings. The project, now three decades old, involves thousands of municipalities globally, including 52 in Israel. However, there is very little evidence regarding the effects of joining the HCN. This study examines whether HCN membership affects residents' self-reported health (SRH). Social survey data for Israel's 13 largest cities in 2005-2017 were analyzed using difference-in-differences and event study research designs. We use the gradual entry of cities to the HCN to compare SRH before and after network entry. Examined variables include municipal spending on health and duration of the city's participation in the network. Data were analyzed through multivariate linear regression with fixed effects at the city and year levels. Joining the HCN does not have an immediate effect on SRH. SRH increases with the duration of the city's participation in the network, but this result is only marginally statistically significant. Municipal health spending mildly increases with membership duration. A weak negative association was found between municipal health spending and SRH. Duration of a city's membership in the HCN is positively associated with residents' SRH; this association is not explained by an increase in municipal health spending. Identifying a mechanism for this improvement is beyond the scope of this study and is left for future research.


Asunto(s)
Promoción de la Salud , Calidad de Vida , Ciudades , Humanos , Israel , Autoinforme
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...