Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
eNeurologicalSci ; 31: 100456, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36938367

RESUMEN

P/Q-type Ca2+ flux into nerve terminals via CaV2.1 channels is essential for neurotransmitter release at neuromuscular junctions and nearly all central synapses. Mutations in CACNA1A, the gene encoding CaV2.1, cause a spectrum of pediatric neurological disorders. We have identified a patient harboring an autosomal-dominant de novo frameshift-causing nucleotide duplication in CACNA1A (c.5018dupG). The duplicated guanine precipitated 43 residues of altered amino acid sequence beginning with a glutamine to serine substitution in CaV2.1 at position 1674 ending with a premature stop codon (CaV2.1 p.Gln1674Serfs*43). The patient presented with episodic downbeat vertical nystagmus, hypotonia, ataxia, developmental delay and febrile seizures. In patch-clamp experiments, no Ba2+ current was observed in tsA-201 cells expressing CaV2.1 p.Gln1674Serfs*43 with ß4 and α2δ-1 auxiliary subunits. The ablation of divalent flux in response to depolarization was likely attributable to the inability of CaV2.1 p.Gln1674Serfs*43 to form a complete channel pore. Our results suggest that the pathology resulting from this frameshift-inducing nucleotide duplication is a consequence of an effective haploinsufficiency.

2.
Brain ; 146(6): 2285-2297, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36477332

RESUMEN

The blood-brain barrier ensures CNS homeostasis and protection from injury. Claudin-5 (CLDN5), an important component of tight junctions, is critical for the integrity of the blood-brain barrier. We have identified de novo heterozygous missense variants in CLDN5 in 15 unrelated patients who presented with a shared constellation of features including developmental delay, seizures (primarily infantile onset focal epilepsy), microcephaly and a recognizable pattern of pontine atrophy and brain calcifications. All variants clustered in one subregion/domain of the CLDN5 gene and the recurrent variants demonstrate genotype-phenotype correlations. We modelled both patient variants and loss of function alleles in the zebrafish to show that the variants analogous to those in patients probably result in a novel aberrant function in CLDN5. In total, human patient and zebrafish data provide parallel evidence that pathogenic sequence variants in CLDN5 cause a novel neurodevelopmental disorder involving disruption of the blood-brain barrier and impaired neuronal function.


Asunto(s)
Microcefalia , Animales , Humanos , Microcefalia/genética , Claudina-5/genética , Claudina-5/metabolismo , Pez Cebra/metabolismo , Barrera Hematoencefálica/metabolismo , Convulsiones/genética , Síndrome
3.
J Child Neurol ; 37(5): 390-396, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35238682

RESUMEN

Cornelia de Lange syndrome is a rare developmental malformation syndrome characterized by small stature, limb anomalies, distinctive facial features, developmental delays, and behavioral issues. The diagnosis of Cornelia de Lange syndrome is made clinically or on the basis of an identified variant in one of the genes associated with Cornelia de Lange syndrome. SMC1A variants are the cause of 5% of the cases of Cornelia de Lange syndrome. SMC1A is located on the X-chromosome and is thought to escape X-inactivation in some females. Patients with SMC1A variants are being increasingly identified through panel testing or exome sequencing without prior clinical suspicion of Cornelia de Lange syndrome. In general, intractable epilepsy is not considered a prominent feature of Cornelia de Lange syndrome, yet this is found in these patients with SMC1A variants. Here we report on a series of patients with SMC1A variants and intractable epilepsy. In contrast to patients with typical SMC1A-associated Cornelia de Lange syndrome, all of the identified patients were female, and when available, X-inactivation studies were highly skewed with truncating variants. We describe the medical involvement and physical appearance of the participants, compared to the diagnostic criteria used for classical Cornelia de Lange syndrome. We also report on the clinical characteristics of the epilepsy, including age of onset, types of seizures, electroencephalographic (EEG) findings, and response to various antiepileptic medications. These findings allow us to draw conclusions about how this population of patients with SMC1A variants fit into the spectrum of Cornelia de Lange syndrome and the broader spectrum of cohesinopathies and allow generalizations that may impact clinical care and, in particular, epilepsy management.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Síndrome de Cornelia de Lange , Epilepsia Refractaria , Epilepsia , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Síndrome de Cornelia de Lange/diagnóstico , Síndrome de Cornelia de Lange/genética , Epilepsia Refractaria/genética , Epilepsia/diagnóstico , Epilepsia/genética , Femenino , Humanos , Masculino , Fenotipo
4.
Brain ; 145(1): 208-223, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-34382076

RESUMEN

Subcellular membrane systems are highly enriched in dolichol, whose role in organelle homeostasis and endosomal-lysosomal pathway remains largely unclear besides being involved in protein glycosylation. DHDDS encodes for the catalytic subunit (DHDDS) of the enzyme cis-prenyltransferase (cis-PTase), involved in dolichol biosynthesis and dolichol-dependent protein glycosylation in the endoplasmic reticulum. An autosomal recessive form of retinitis pigmentosa (retinitis pigmentosa 59) has been associated with a recurrent DHDDS variant. Moreover, two recurring de novo substitutions were detected in a few cases presenting with neurodevelopmental disorder, epilepsy and movement disorder. We evaluated a large cohort of patients (n = 25) with de novo pathogenic variants in DHDDS and provided the first systematic description of the clinical features and long-term outcome of this new neurodevelopmental and neurodegenerative disorder. The functional impact of the identified variants was explored by yeast complementation system and enzymatic assay. Patients presented during infancy or childhood with a variable association of neurodevelopmental disorder, generalized epilepsy, action myoclonus/cortical tremor and ataxia. Later in the disease course, they experienced a slow neurological decline with the emergence of hyperkinetic and/or hypokinetic movement disorder, cognitive deterioration and psychiatric disturbances. Storage of lipidic material and altered lysosomes were detected in myelinated fibres and fibroblasts, suggesting a dysfunction of the lysosomal enzymatic scavenger machinery. Serum glycoprotein hypoglycosylation was not detected and, in contrast to retinitis pigmentosa and other congenital disorders of glycosylation involving dolichol metabolism, the urinary dolichol D18/D19 ratio was normal. Mapping the disease-causing variants into the protein structure revealed that most of them clustered around the active site of the DHDDS subunit. Functional studies using yeast complementation assay and in vitro activity measurements confirmed that these changes affected the catalytic activity of the cis-PTase and showed growth defect in yeast complementation system as compared with the wild-type enzyme and retinitis pigmentosa-associated protein. In conclusion, we characterized a distinctive neurodegenerative disorder due to de novo DHDDS variants, which clinically belongs to the spectrum of genetic progressive encephalopathies with myoclonus. Clinical and biochemical data from this cohort depicted a condition at the intersection of congenital disorders of glycosylation and inherited storage diseases with several features akin to of progressive myoclonus epilepsy such as neuronal ceroid lipofuscinosis and other lysosomal disorders.


Asunto(s)
Transferasas Alquil y Aril , Mioclonía , Enfermedades Neurodegenerativas , Retinitis Pigmentosa , Niño , Dolicoles/metabolismo , Humanos , Enfermedades Neurodegenerativas/genética , Retinitis Pigmentosa/genética
5.
Mol Genet Genomic Med ; 9(10): e1809, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34519438

RESUMEN

The phenotypic variability associated with pathogenic variants in Lysine Acetyltransferase 6B (KAT6B, a.k.a. MORF, MYST4) results in several interrelated syndromes including Say-Barber-Biesecker-Young-Simpson Syndrome and Genitopatellar Syndrome. Here we present 20 new cases representing 10 novel KAT6B variants. These patients exhibit a range of clinical phenotypes including intellectual disability, mobility and language difficulties, craniofacial dysmorphology, and skeletal anomalies. Given the range of features previously described for KAT6B-related syndromes, we have identified additional phenotypes including concern for keratoconus, sensitivity to light or noise, recurring infections, and fractures in greater numbers than previously reported. We surveyed clinicians to qualitatively assess the ways families engage with genetic counselors upon diagnosis. We found that 56% (10/18) of individuals receive diagnoses before the age of 2 years (median age = 1.96 years), making it challenging to address future complications with limited accessible information and vast phenotypic severity. We used CRISPR to introduce truncating variants into the KAT6B gene in model cell lines and performed chromatin accessibility and transcriptome sequencing to identify key dysregulated pathways. This study expands the clinical spectrum and addresses the challenges to management and genetic counseling for patients with KAT6B-related disorders.


Asunto(s)
Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Histona Acetiltransferasas/genética , Mutación , Fenotipo , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/genética , Alelos , Blefarofimosis/diagnóstico , Blefarofimosis/genética , Estudios de Cohortes , Hipotiroidismo Congénito/diagnóstico , Hipotiroidismo Congénito/genética , Anomalías Craneofaciales/diagnóstico , Anomalías Craneofaciales/genética , Facies , Asesoramiento Genético , Sitios Genéticos , Genotipo , Cardiopatías Congénitas/diagnóstico , Cardiopatías Congénitas/genética , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Inestabilidad de la Articulación/diagnóstico , Inestabilidad de la Articulación/genética , Riñón/anomalías , Masculino , Rótula/anomalías , Trastornos Psicomotores/diagnóstico , Trastornos Psicomotores/genética , Escroto/anomalías , Anomalías Urogenitales/diagnóstico , Anomalías Urogenitales/genética
6.
Sci Adv ; 7(4)2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33523931

RESUMEN

Reversible modification of proteins with linkage-specific ubiquitin chains is critical for intracellular signaling. Information on physiological roles and underlying mechanisms of particular ubiquitin linkages during human development are limited. Here, relying on genomic constraint scores, we identify 10 patients with multiple congenital anomalies caused by hemizygous variants in OTUD5, encoding a K48/K63 linkage-specific deubiquitylase. By studying these mutations, we find that OTUD5 controls neuroectodermal differentiation through cleaving K48-linked ubiquitin chains to counteract degradation of select chromatin regulators (e.g., ARID1A/B, histone deacetylase 2, and HCF1), mutations of which underlie diseases that exhibit phenotypic overlap with OTUD5 patients. Loss of OTUD5 during differentiation leads to less accessible chromatin at neuroectodermal enhancers and aberrant gene expression. Our study describes a previously unidentified disorder we name LINKED (LINKage-specific deubiquitylation deficiency-induced Embryonic Defects) syndrome and reveals linkage-specific ubiquitin cleavage from chromatin remodelers as an essential signaling mode that coordinates chromatin remodeling during embryogenesis.


Asunto(s)
Genómica , Ubiquitina , Cromatina/genética , Humanos , Transducción de Señal , Ubiquitina/metabolismo , Ubiquitinación
7.
BMJ Case Rep ; 14(1)2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33462000

RESUMEN

Pontocerebellar hypoplasia type 1B (PCH1B) describes an autosomal recessive neurological condition that involves hypoplasia or atrophy of the cerebellum and pons, resulting in neurocognitive impairments. Although there is phenotypic variability, this is often an infantile lethal condition, and most cases have been described to be congenital and neurodegenerative. PCH1B is caused by mutations in the gene EXOSC3, which encodes exosome component 3, a subunit of the human RNA exosome complex. A range of pathogenic variants with some correlation to phenotype have been reported. The most commonly reported pathogenic variant in EXOSC3 is c.395A>C, p.(Asp132Ala); homozygosity for this variant has been proposed to lead to milder phenotypes than compound heterozygosity. In this case, we report two siblings with extraordinarily mild presentations of PCH1B who are compound heterozygous for variants in EXOSC3 c.155delC and c.80T>G. These patients drastically expand the phenotypic variability of PCH1B and raise questions about genotype-phenotype associations.


Asunto(s)
Enfermedades Cerebelosas/diagnóstico , Enfermedades Cerebelosas/genética , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Mutación , Fenotipo , Proteínas de Unión al ARN/genética , Adolescente , Femenino , Marcadores Genéticos , Heterocigoto , Humanos , Linaje , Índice de Severidad de la Enfermedad , Hermanos , Adulto Joven
8.
J Matern Fetal Neonatal Med ; 34(18): 3014-3020, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31619098

RESUMEN

OBJECTIVES: We sought to characterize patterns of in utero dilation in isolated severe fetal ventriculomegaly (ISVM) and investigate their value in predicting obstetrical and postnatal outcomes. METHODS: This is a retrospective cohort study. ISVM was defined as a sonographic cerebral ventricle atrial with width ≥15 mm in the absence of additional cerebral or other anatomic anomalies. The aim of this study was to characterize two ISVM groups using a receiver operator curve to evaluate the rate of ventricular progression versus need for ventriculoperitoneal (VP) shunt postnatally. Outcomes were compared between the groups using Pearson's chi-squared test, Student t-test, and descriptive statistics. RESULTS: Based on the ROC analysis, ventricular growth of ≥3 mm/week versus <3 mm/week distinguished fetuses likely to require a postnatal VP shunt. Fetuses were characterized as accelerators if ventricle growth was ≥3 mm/week at any point and plateaus if <3 mm/week. Accelerators showed a greater average rate of ventricle progression than plateaus (4.1 vs. 1.0 mm/week, respectively, p = .031) and were more likely to be delivered at earlier gestational ages (34.7 vs. 37.1 weeks respectively, p = .02). Ninety percent of accelerators demonstrated a need for shunt placement compared with 18.8% of plateaus (p < .001). Significantly more plateaus (87.5%) underwent a trial of labor while accelerators were more likely to have planned cesareans (70%, p = .009). CONCLUSIONS: This study characterizes ISVM into two distinct populations based upon the rate of ventricle expansion, differentiated by the need for postnatal shunting. Once a ventricular growth pattern is determined, these distinctions should prove useful in prenatal management and delivery planning.


Asunto(s)
Hidrocefalia , Derivación Ventriculoperitoneal , Aceleración , Ventrículos Cerebrales/diagnóstico por imagen , Dilatación , Femenino , Feto , Humanos , Embarazo , Estudios Retrospectivos
9.
Am J Hum Genet ; 107(2): 352-363, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32693025

RESUMEN

MORC2 encodes an ATPase that plays a role in chromatin remodeling, DNA repair, and transcriptional regulation. Heterozygous variants in MORC2 have been reported in individuals with autosomal-dominant Charcot-Marie-Tooth disease type 2Z and spinal muscular atrophy, and the onset of symptoms ranges from infancy to the second decade of life. Here, we present a cohort of 20 individuals referred for exome sequencing who harbor pathogenic variants in the ATPase module of MORC2. Individuals presented with a similar phenotype consisting of developmental delay, intellectual disability, growth retardation, microcephaly, and variable craniofacial dysmorphism. Weakness, hyporeflexia, and electrophysiologic abnormalities suggestive of neuropathy were frequently observed but were not the predominant feature. Five of 18 individuals for whom brain imaging was available had lesions reminiscent of those observed in Leigh syndrome, and five of six individuals who had dilated eye exams had retinal pigmentary abnormalities. Functional assays revealed that these MORC2 variants result in hyperactivation of epigenetic silencing by the HUSH complex, supporting their pathogenicity. The described set of morphological, growth, developmental, and neurological findings and medical concerns expands the spectrum of genetic disorders resulting from pathogenic variants in MORC2.


Asunto(s)
Adenosina Trifosfatasas/genética , Anomalías Craneofaciales/genética , Trastornos del Crecimiento/genética , Mutación/genética , Trastornos del Neurodesarrollo/genética , Factores de Transcripción/genética , Adolescente , Adulto , Niño , Preescolar , Femenino , Enfermedades Genéticas Congénitas/genética , Heterocigoto , Humanos , Lactante , Discapacidad Intelectual/genética , Masculino , Microcefalia/genética , Persona de Mediana Edad , Fenotipo , Adulto Joven
10.
Neuron ; 106(2): 246-255.e6, 2020 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-32097629

RESUMEN

Genes mutated in human neuronal migration disorders encode tubulin proteins and a variety of tubulin-binding and -regulating proteins, but it is very poorly understood how these proteins function together to coordinate migration. Additionally, the way in which regional differences in neocortical migration are controlled is completely unknown. Here we describe a new syndrome with remarkably region-specific effects on neuronal migration in the posterior cortex, reflecting de novo variants in CEP85L. We show that CEP85L is required cell autonomously in vivo and in vitro for migration, that it localizes to the maternal centriole, and that it forms a complex with many other proteins required for migration, including CDK5, LIS1, NDE1, KIF2A, and DYNC1H1. Loss of CEP85L disrupts CDK5 localization and activation, leading to centrosome disorganization and disrupted microtubule cytoskeleton organization. Together, our findings suggest that CEP85L highlights a complex that controls CDK5 activity to promote neuronal migration.


Asunto(s)
Movimiento Celular , Quinasa 5 Dependiente de la Ciclina/genética , Proteínas del Citoesqueleto/genética , Lisencefalia/genética , Lisencefalia/patología , Neocórtex/patología , Neuronas/patología , Proteínas de Fusión Oncogénica/genética , Centriolos/genética , Niño , Preescolar , Femenino , Humanos , Masculino , Microtúbulos/genética , Microtúbulos/ultraestructura , Proteínas del Tejido Nervioso/fisiología , Adulto Joven
11.
Ann Clin Transl Neurol ; 7(2): 254-258, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31920009

RESUMEN

Aicardi-Goutières syndrome (AGS) is a rare and likely underdiagnosed genetic leukoencephalopathy, typically presenting in infancy with encephalopathy and characteristic neuroimaging features, with residual static neurological deficits. We describe a patient who, following an initial presentation at the age of 12 months in keeping with AGS, exhibited a highly atypical relapsing course of neurological symptoms in adulthood with essentially normal neuroimaging. Whole-exome sequencing confirmed a pathogenic RNASEH2B gene variant consistent with AGS. This case highlights the expanding phenotypes associated with AGS and the potential role of whole-exome sequencing in facilitating an increase in the rate of diagnosis.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso , Malformaciones del Sistema Nervioso , Ribonucleasa H/genética , Adulto , Enfermedades Autoinmunes del Sistema Nervioso/diagnóstico , Enfermedades Autoinmunes del Sistema Nervioso/genética , Enfermedades Autoinmunes del Sistema Nervioso/fisiopatología , Femenino , Humanos , Imagen por Resonancia Magnética , Malformaciones del Sistema Nervioso/diagnóstico , Malformaciones del Sistema Nervioso/genética , Malformaciones del Sistema Nervioso/fisiopatología , Fenotipo , Recurrencia , Secuenciación del Exoma , Adulto Joven
12.
BMJ Case Rep ; 12(5)2019 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-31133547

RESUMEN

Several genes located within the chromosome 8p11.21 region are associated with movement disorders including SLC20A2 and THAP1. SLC20A2 is one of four genes associated with primary familial brain calcification, a syndrome that also includes movement disorders, cognitive decline and psychiatric issues. THAP1 is associated with dystonia type 6, a dominantly inherited dystonia with variable expression. In addition, several reports in the French-Canadian population have described microdeletions within the 8p11.2 region presenting with dystonia-plus syndromes including brain calcifications. This case report describes a 12-year-old boy with brain calcifications and generalised dystonia associated with a deletion in the 8p11.2 region detected via single nucleotide polymorphism microarray. This report emphasises the importance of obtaining a microarray analysis in diagnosing movement disorders and suggests that this copy number variant may be an under-recognised cause of dystonia and brain calcifications.


Asunto(s)
Encefalopatías/genética , Encefalopatías/patología , Distonía/diagnóstico , Malformaciones del Sistema Nervioso/genética , Proteínas Reguladoras de la Apoptosis , Calcinosis/diagnóstico por imagen , Calcinosis/patología , Niño , Cromosomas Humanos Par 2/genética , Proteínas de Unión al ADN , Distonía/genética , Eliminación de Gen , Haploinsuficiencia/genética , Heterocigoto , Humanos , Masculino , Análisis por Micromatrices/métodos , Trastornos del Movimiento/genética , Malformaciones del Sistema Nervioso/diagnóstico por imagen , Malformaciones del Sistema Nervioso/patología , Polimorfismo de Nucleótido Simple , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III
14.
Semin Neurol ; 36(4): 362-6, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27643905

RESUMEN

Leukodystrophies are heritable disorders primarily affecting the white matter of the central nervous system. They are clinically characterized by spasticity, optic atrophy, and ataxia. These are a heterogeneous group of disorders, including hypomyelinating disorders and demyelinating disorders due to abnormal accumulations. Although individually rare, together they are responsible for substantial disease burden. Essentially all these disorders have infantile, juvenile, and adult presentations. Understanding the genetic and biochemical bases of these disorders opens the door to therapeutic approaches.


Asunto(s)
Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias , Enfermedades por Almacenamiento Lisosomal , Adolescente , Adulto , Ataxia , Encefalopatías , Preescolar , Enfermedades Desmielinizantes , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/diagnóstico , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/terapia , Humanos , Lactante , Enfermedades por Almacenamiento Lisosomal/diagnóstico , Enfermedades por Almacenamiento Lisosomal/terapia
15.
Pediatr Neurol ; 64: 87-91, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27659738

RESUMEN

BACKGROUND: SCN8A mutations are rare and cause a phenotypically heterogeneous early onset epilepsy known as early infantile epileptic encephalopathy type 13 (EIEE13, OMIM #614558). There are currently no clear genotype-phenotype correlations to help guide patient counseling and management. PATIENT DESCRIPTION: We describe a patient with EIEE13 (de novo heterozygous pathogenic mutation in SCN8A - p.Ile240Val (ATT>GTT)) who presented prenatally with maternally reported intermittent, rhythmic movements that, when observed on ultrasound, were concerning for fetal seizures. Ultrasound also revealed abnormal developmental states. With maternal administration of levetiracetam, the rhythmic fetal movements stopped. After birth, the patient developed treatment-refractory multi-focal epilepsy confirmed by electroencephalogram. Neuroimaging revealed restricted diffusion in the superior cerebellar peduncles, a finding not reported previously in EIEE13. CONCLUSION: This is the first report of EIEE13 associated with clinical prenatal-onset seizures. Ultrasonography can be useful for identifying fetal seizures, which may be treatable in utero. Ideally, the clinical approach to fetal seizures should involve a multidisciplinary team spanning the pre- and postnatal course to expedite early diagnosis and optimize management, as illustrated by this patient.


Asunto(s)
Epilepsia/diagnóstico , Epilepsia/terapia , Enfermedades Fetales/diagnóstico , Enfermedades Fetales/terapia , Canal de Sodio Activado por Voltaje NAV1.6/genética , Encéfalo/diagnóstico por imagen , Encéfalo/efectos de los fármacos , Encéfalo/embriología , Encéfalo/fisiopatología , Epilepsia/genética , Epilepsia/fisiopatología , Femenino , Enfermedades Fetales/genética , Enfermedades Fetales/fisiopatología , Humanos , Recién Nacido , Convulsiones/diagnóstico , Convulsiones/genética , Convulsiones/fisiopatología , Convulsiones/terapia , Ultrasonografía Prenatal
16.
Pediatrics ; 138(3)2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27531146

RESUMEN

This case series demonstrates a novel clinical phenotype of gait disturbance as an initial symptom in children <3 years old with anti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis. Anti-NMDAR encephalitis is one of the most common causes of encephalitis in children, more common than any of the viral encephalitides and the second most common autoimmune cause after acute disseminated encephalomyelitis. Anti-NMDAR encephalitis in children often presents with disrupted speech and sleep patterns followed by progression to motor dysfunction, dyskinesias, and seizures. Because this condition can present initially with vague symptoms, diagnosis and treatment of anti-NMDAR encephalitis are often delayed. Although nearly 40% of all reported patients are <18 years old, few infants and toddlers have been reported with this disease. Four children <3 years old were diagnosed with anti-NMDAR encephalitis at our institution. Interestingly, each child presented initially with the chief concern of gait disturbance. One child presented with unsteady walking and slurred speech, suggestive of cerebellar ataxia, and 3 had inability to bear weight on a unilateral lower extremity, resulting in unsteady gait. Two of these children had seizures at the time of hospital presentation. All developed classic behavioral changes, insomnia, dyskinesias, or decreased speech immediately before or during hospitalization. When seen in the setting of other neurologic abnormalities, gait disturbance should raise the concern for anti-NMDAR encephalitis in young children. The differential diagnosis for gait disturbance in toddlers and key features suggestive of anti-NMDAR encephalitis are reviewed.


Asunto(s)
Encefalitis Antirreceptor N-Metil-D-Aspartato/diagnóstico , Trastornos Neurológicos de la Marcha/etiología , Encefalitis Antirreceptor N-Metil-D-Aspartato/tratamiento farmacológico , Anticuerpos/líquido cefalorraquídeo , Encéfalo/diagnóstico por imagen , Preescolar , Discinesias/etiología , Femenino , Glucocorticoides/uso terapéutico , Humanos , Inmunoglobulinas Intravenosas/uso terapéutico , Lactante , Imagen por Resonancia Magnética , Masculino , Metilprednisolona/uso terapéutico , Receptores de N-Metil-D-Aspartato/inmunología , Convulsiones/etiología , Trastornos del Inicio y del Mantenimiento del Sueño/etiología , Trastornos del Habla/etiología
17.
Nat Genet ; 48(10): 1185-92, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27571260

RESUMEN

Although ribosomes are ubiquitous and essential for life, recent data indicate that monogenic causes of ribosomal dysfunction can confer a remarkable degree of specificity in terms of human disease phenotype. Box C/D small nucleolar RNAs (snoRNAs) are evolutionarily conserved non-protein-coding RNAs involved in ribosome biogenesis. Here we show that biallelic mutations in the gene SNORD118, encoding the box C/D snoRNA U8, cause the cerebral microangiopathy leukoencephalopathy with calcifications and cysts (LCC), presenting at any age from early childhood to late adulthood. These mutations affect U8 expression, processing and protein binding and thus implicate U8 as essential in cerebral vascular homeostasis.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales/genética , Leucoencefalopatías/genética , Mutación , ARN Nucleolar Pequeño/genética , Adolescente , Adulto , Calcinosis/genética , Calcinosis/patología , Línea Celular , Enfermedades de los Pequeños Vasos Cerebrales/patología , Niño , Preescolar , Cromosomas Humanos Par 17 , Estudios de Cohortes , Quistes/genética , Quistes/patología , Exoma , Femenino , Ligamiento Genético , Genoma Humano , Humanos , Lactante , Leucoencefalopatías/patología , Masculino , Persona de Mediana Edad , Análisis de Secuencia de ADN , Adulto Joven
18.
Am J Med Genet A ; 167A(11): 2767-76, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26174511

RESUMEN

We present two children who both had two missense mutations in the Kinesin Family Member 7 (KIF7) gene. A seven year old female with severe developmental delays, failure to thrive and growth retardation, infantile spasms, a cardiac vascular ring and right-sided aortic arch, imperforate anus, hydronephrosis with a right renal cyst, syndactyly and abnormal white matter was a compound heterozygote for c.3365C > G, predicting p.(Ser1122Trp) that was maternally inherited and c.2482G > A, predicting p.(Val828Met) that was paternally inherited. An eight year old female with severe developmental delays, epilepsy, left postaxial polydactyly of the hand and abnormalities of brain development including hydrocephalus, pachygyria and absence of the body and splenium of the corpus callous was a compound heterozygote for c.461G > A, predicting p.(Arg154Gln) and c.2959 G > A, predicting p.(Glu987Lys) that was maternally inherited and her father was unavailable for testing. The presentations in these children include features of acrocallosal syndrome, such as hypoplasia of the corpus callosum, enlarged ventricles, facial dysmorphism with a prominent forehead and broad halluces in the first child, but included atypical findings for individuals previously reported to have truncating mutations in KIF7, including imperforate anus, infantile spasms and severe growth retardation. We conclude that these phenotypes may result from the KIF7 sequence variants and abnormal hedgehog signaling, but that the full spectrum of KIF7-associated features remains to be determined.


Asunto(s)
Anomalías Múltiples/genética , Síndrome Acrocallosal/complicaciones , Síndrome Acrocallosal/genética , Sustitución de Aminoácidos/genética , Cinesinas/genética , Mutación Missense/genética , Adulto , Secuencia de Aminoácidos , Niño , Secuencia Conservada , Facies , Femenino , Humanos , Lactante , Recién Nacido , Imagen por Resonancia Magnética , Datos de Secuencia Molecular , Fenotipo , Embarazo
19.
Curr Treat Options Neurol ; 10(6): 410-9, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18990309

RESUMEN

The ketogenic diet is well established as therapy for intractable epilepsy. It should be considered first-line therapy in glucose transporter type 1 and pyruvate dehydrogenase deficiency. It should be considered early in the treatment of Dravet syndrome and myoclonic-astatic epilepsy (Doose syndrome). Initial studies indicate that the ketogenic diet appears effective in other metabolic conditions, including phosphofructokinase deficiency and glycogenosis type V (McArdle disease). It appears to function in these disorders by providing an alternative fuel source. A growing body of literature suggests the ketogenic diet may be beneficial in certain neurodegenerative diseases, including Alzheimer disease, Parkinson's disease, and amyotrophic lateral sclerosis. In these disorders, the ketogenic diet appears to be neuroprotective, promoting enhanced mitochondrial function and rescuing adenosine triphosphate production. Dietary therapy is a promising intervention for cancer, given that it may target the relative inefficiency of tumors in using ketone bodies as an alternative fuel source. The ketogenic diet also may have a role in improving outcomes in trauma and hypoxic injuries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...