Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38014342

RESUMEN

Dravet syndrome (DS) is a severe genetic epilepsy primarily caused by de novo mutations in a voltage-activated sodium channel gene (SCN1A). Patients face life-threatening seizures that are largely resistant to available anti-seizure medications (ASM). Preclinical DS animal models are a valuable tool to identify candidate ASMs for these patients. Among these, scn1lab mutant zebrafish exhibiting spontaneous seizure-like activity are particularly amenable to large-scale drug screening. Prior screening in a scn1lab mutant zebrafish line generated using N-ethyl-Nnitrosourea (ENU) identified valproate, stiripentol, and fenfluramine e.g., Federal Drug Administration (FDA) approved drugs with clinical application in the DS population. Successful phenotypic screening in scn1lab mutant zebrafish consists of two stages: (i) a locomotion-based assay measuring high-velocity convulsive swim behavior and (ii) an electrophysiology-based assay, using in vivo local field potential (LFP) recordings, to quantify electrographic seizure-like events. Using this strategy more than 3000 drug candidates have been screened in scn1lab zebrafish mutants. Here, we curated a list of nine additional anti-seizure drug candidates recently identified in preclinical models: 1-EBIO, AA43279, chlorzoxazone, donepezil, lisuride, mifepristone, pargyline, soticlestat and vorinostat. First-stage locomotion-based assays in scn1lab mutant zebrafish identified only 1-EBIO, chlorzoxazone and lisuride. However, second-stage LFP recording assays did not show significant suppression of spontaneous electrographic seizure activity for any of the nine anti-seizure drug candidates. Surprisingly, soticlestat induced frank electrographic seizure-like discharges in wild-type control zebrafish. Taken together, our results failed to replicate clear anti-seizure efficacy for these drug candidates highlighting a necessity for strict scientific standards in preclinical identification of ASMs.

2.
Eur J Paediatr Neurol ; 24: 70-80, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31982307

RESUMEN

Our understanding of the genetic aetiology of paediatric epilepsies has grown substantially over the last decade. However, in order to translate improved diagnostics to personalised treatments, there is an urgent need to link molecular pathophysiology in epilepsy to whole-brain dynamics in seizures. Zebrafish have emerged as a promising new animal model for epileptic seizure disorders, with particular relevance for genetic and developmental epilepsies. As a novel model organism for epilepsy research they combine key advantages: the small size of larval zebrafish allows high throughput in vivo experiments; the availability of advanced genetic tools allows targeted modification to model specific human genetic disorders (including genetic epilepsies) in a vertebrate system; and optical access to the entire central nervous system has provided the basis for advanced microscopy technologies to image structure and function in the intact larval zebrafish brain. There is a growing body of literature describing and characterising features of epileptic seizures and epilepsy in larval zebrafish. Recently genetically encoded calcium indicators have been used to investigate the neurobiological basis of these seizures with light microscopy. This approach offers a unique window into the multiscale dynamics of epileptic seizures, capturing both whole-brain dynamics and single-cell behaviour concurrently. At the same time, linking observations made using calcium imaging in the larval zebrafish brain back to an understanding of epileptic seizures largely derived from cortical electrophysiological recordings in human patients and mammalian animal models is non-trivial. In this review we briefly illustrate the state of the art of epilepsy research in zebrafish with particular focus on calcium imaging of epileptic seizures in the larval zebrafish. We illustrate the utility of a dynamic systems perspective on the epileptic brain for providing a principled approach to linking observations across species and identifying those features of brain dynamics that are most relevant to epilepsy. In the following section we survey the literature for imaging features associated with epilepsy and epileptic seizures and link these to observations made from humans and other more traditional animal models. We conclude by identifying the key challenges still facing epilepsy research in the larval zebrafish and indicate strategies for future research to address these and integrate more directly with the themes and questions that emerge from investigating epilepsy in other model systems and human patients.


Asunto(s)
Modelos Animales de Enfermedad , Epilepsia , Convulsiones , Pez Cebra , Animales , Epilepsia/genética , Epilepsia/fisiopatología , Larva , Convulsiones/genética , Convulsiones/fisiopatología
3.
Prog Brain Res ; 226: 195-207, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27323944

RESUMEN

With an increase in the number of disease causing genetic mutations identified from epilepsy cohorts, zebrafish are proving to be an attractive vertebrate model for functional analysis of these allele variants. Not only do zebrafish have conserved gene functions, but larvae harboring mutations in identified human epileptic genes show spontaneous seizure activity and mimic the convulsive behavioral movements observed in humans. With zebrafish being compatible with medium to high-throughput screening, they are also proving to be a unique and powerful system for early preclinical drug screening, including novel target identification, pharmacology, and toxicology. Additionally, with recent advances in genomic engineering technologies, it is now possible to study the precise pathophysiology of patient-specific gene mutations in zebrafish. The following sections highlight how the unique attributes of zebrafish, in combination with genetic modifications, are continuing to transform our understanding of epilepsy and help identify personalized therapeutics for specific patient cohorts.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Epilepsia/tratamiento farmacológico , Epilepsia/genética , Mutación/genética , Animales , Animales Modificados Genéticamente , Modelos Animales de Enfermedad , Humanos , Pez Cebra , Proteínas de Pez Cebra/genética
4.
Neuroscience ; 131(3): 759-68, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15730879

RESUMEN

Rodent seizure models have significantly contributed to our basic understanding of epilepsy. However, medically intractable forms of epilepsy persist and the fundamental mechanisms underlying this disease remain unclear. Here we show that seizures can be elicited in a simple vertebrate system e.g. zebrafish larvae (Danio rerio). Exposure to a common convulsant agent (pentylenetetrazole, PTZ) induced a stereotyped and concentration-dependent sequence of behavioral changes culminating in clonus-like convulsions. Extracellular recordings from fish optic tectum revealed ictal and interictal-like electrographic discharges after application of PTZ, which could be blocked by tetrodotoxin or glutamate receptor antagonists. Epileptiform discharges were suppressed by commonly used antiepileptic drugs, valproate and diazepam, in a concentration-dependent manner. Up-regulation of c-fos expression was also observed in CNS structures of zebrafish exposed to PTZ. Taken together, these results demonstrate that chemically-induced seizures in zebrafish exhibit behavioral, electrographic, and molecular changes that would be expected from a rodent seizure model. Therefore, zebrafish larvae represent a powerful new system to study the underlying basis of seizure generation, epilepsy and epileptogenesis.


Asunto(s)
Antagonistas del GABA/farmacología , Expresión Génica/efectos de los fármacos , Actividad Motora/efectos de los fármacos , Neuronas/efectos de los fármacos , Pentilenotetrazol/farmacología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Animales , Anticonvulsivantes/farmacología , Conducta Animal/efectos de los fármacos , Diazepam/farmacología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Antagonistas de Aminoácidos Excitadores/farmacología , Hibridación in Situ/métodos , Larva , Potenciales de la Membrana/efectos de los fármacos , Neuronas/fisiología , Proteínas Proto-Oncogénicas c-fos/genética , ARN Mensajero/biosíntesis , Tiempo de Reacción/efectos de los fármacos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Convulsiones/fisiopatología , Colículos Superiores/citología , Colículos Superiores/efectos de los fármacos , Factores de Tiempo , Pez Cebra/fisiología
5.
Neuropeptides ; 38(4): 261-5, 2004 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15337378

RESUMEN

Neuropeptide Y (NPY), a 36 amino-acid member of the pancreatic polypeptide family, has received considerable attention in recent years as an endogenous modulator of epileptic activity. Prominently expressed in brain regions involved in seizure generation and propagation, NPY can exert powerful effects on synaptic transmission. Here, we discuss the anti-epileptic actions of NPY and receptor subtypes responsible.


Asunto(s)
Epilepsia/metabolismo , Neuropéptido Y/metabolismo , Animales , Encéfalo/anatomía & histología , Encéfalo/metabolismo , Receptores de Neuropéptido Y/metabolismo
6.
Neuroscience ; 128(3): 655-63, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15381293

RESUMEN

Epileptic seizures are characterized by abnormal electrical discharge. In previous studies we established a powerful antiepileptic action for a commonly used diuretic (furosemide). However, it remains unclear precisely how furosemide terminates abnormal electrical discharges. To address this issue, we performed in vitro experiments to examine conditions where furosemide exerts antiepileptic activity and patch-clamp studies to analyze the effect of furosemide on neuronal membrane properties, synaptic function and inward potassium current. Furosemide was not found to alter synaptic field responses, excitatory postsynaptic currents or intrinsic membrane properties of principal hippocampal neurons. Our in vitro studies indicate that furosemide does not abolish spontaneous epileptiform bursting during co-application of Ba2+ or Cs+ ions (to block inwardly rectifying potassium channels). Our patch-clamp data indicate that furosemide enhances the function of astrocytic, but not neuronal, inward potassium channels and that this modulation may be required for its antiepileptic activity. Although a variety of antiepileptic drugs are already available, none of these compounds selectively target astrocytes while preserving synaptic/neuronal function. Thus, furosemide-mediated modulation of inward potassium current (on astrocytes) represents a new target for control of abnormal electrical discharge in the CNS.


Asunto(s)
Anticonvulsivantes/farmacología , Astrocitos/efectos de los fármacos , Epilepsia/tratamiento farmacológico , Furosemida/farmacología , Hipocampo/efectos de los fármacos , Neuronas/efectos de los fármacos , 4-Aminopiridina/farmacología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Astrocitos/fisiología , Bario/farmacología , Cesio/farmacología , Epilepsia/metabolismo , Epilepsia/fisiopatología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Hipocampo/fisiología , Ratones , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiología , Neuronas/fisiología , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio/efectos de los fármacos , Canales de Potasio/fisiología , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología
7.
J Neurophysiol ; 88(5): 2745-54, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12424309

RESUMEN

Neuronal migration disorders (NMDs) can be associated with neurological dysfunction such as mental retardation, and clusters of disorganized cells (heterotopias) often act as seizure foci in medically intractable partial epilepsies. Methylazoxymethanol (MAM) treatment of pregnant rats results in neuronal heterotopias in offspring, especially in hippocampal area CA1. Although the neurons in dysplastic areas in this model are frequently hyperexcitable, the precise mechanisms controlling excitability remain unclear. Here, we used IR-DIC videomicroscopy and whole cell voltage-clamp techniques to test whether the potent anti-excitatory actions of neuropeptide Y (NPY) affected synaptic excitation of heterotopic neurons. We also compared several synaptic and intrinsic properties of heterotopic, layer 2-3 cortical, and CA1 pyramidal neurons, to further characterize heterotopic cells. NPY powerfully inhibited synaptic excitation onto normal and normotopic CA1 cells but was nearly ineffective on responses evoked in heterotopic cells from stimulation sites within the heterotopia. Glutamatergic synaptic responses on heterotopic cells exhibited a comparatively small, D-2-amino-5-phosphopentanoic acid-sensitive, N-methyl-D-aspartate component. Heterotopic neurons also differed from normal CA1 cells in postsynaptic membrane currents, possessing a prominent inwardly rectifying K(+) current sensitive to Cs(+) and Ba(2+), similar to neocortical layer 2-3 pyramidal cells. CA1 cells instead had a prominent Cs(+)- and 4-(N-ethyl-N-phenylamino)-1,2-dimethyl-6-(methylamino) pyrimidinium chloride-sensitive I(h) and negligible inward rectification, unlike heterotopic cells. Thus heterotopic CA1 cells appear to share numerous physiological similarities with neocortical neurons. The lack of NPY's effects on intra-heterotopic inputs, the small contribution of I(h), and abnormal glutamate receptor function, may all contribute to the lowered threshold for epileptiform activity observed in hippocampal heterotopias and could be important factors in epilepsies associated with NMDs.


Asunto(s)
Anomalías Inducidas por Medicamentos/fisiopatología , Epilepsia/fisiopatología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Acetato de Metilazoximetanol/análogos & derivados , Neuropéptido Y/farmacología , Células Piramidales/efectos de los fármacos , Teratógenos , Animales , Electrofisiología , Epilepsia/inducido químicamente , Femenino , Hipocampo/citología , Hipocampo/efectos de los fármacos , Histocitoquímica , Potenciales de la Membrana/fisiología , Neocórtex/citología , Neocórtex/efectos de los fármacos , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio/metabolismo , Embarazo , Células Piramidales/ultraestructura , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Membranas Sinápticas/efectos de los fármacos
8.
Neuroscience ; 114(4): 961-72, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12379251

RESUMEN

Cortical malformations resulting from aberrant brain development can be associated with mental retardation, dyslexia, and intractable forms of epilepsy. Despite emerging interest in the pathology and etiology of cortical malformations, little is known about the phenotype of cells within these lesions. In utero exposure to the DNA methylating agent methylazoxymethanol acetate (MAM) during a critical stage in neurodevelopment results in animals with distinct clusters of displaced neurons in hippocampus, i.e. nodular heterotopia. Here we examined the molecular and electrophysiological properties of cells within hippocampal heterotopia using rats exposed to MAM during gestation. Molecular analysis revealed that heterotopic cells do not express mRNA markers normally found in hippocampal pyramidal cells or dentate granule cells (SCIP, Math-2, Prox-1, neuropilin-2). In contrast, Id-2 mRNA, normally abundant in Layer II-III supragranular neocortical neurons but not in CA1 pyramidal neurons, was prominently expressed in hippocampal heterotopia. Current-clamp analysis of the firing properties of heterotopic neurons revealed a striking similarity with supragranular cortical neurons. In particular, both cells were characterized by small hyperpolarizing 'sag' potentials, high input resistance values, slow spike-train afterhyperpolarizations, and the absence of a depolarizing afterpotential. Normotopic CA1 pyramidal neurons (e.g. pyramidal cells with normal lamination adjacent to a heterotopia) in the MAM brain exhibited molecular and electrophysiological properties that were nearly identical to those of age-matched CA1 pyramidal neurons from control rats. We conclude that neuronal heterotopiae in the hippocampus of MAM-exposed rats are comprised of neurons with a Layer II-III supragranular cortex phenotype. The MAM model, therefore, may serve as a useful tool in examination of the factors influencing aberrant brain development and epilepsy.


Asunto(s)
Encefalopatías/fisiopatología , Corteza Cerebral/anomalías , Coristoma/fisiopatología , Hipocampo/anomalías , Potenciales de Acción/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Encefalopatías/patología , Movimiento Celular , Corteza Cerebral/patología , Coristoma/patología , Femenino , Expresión Génica , Hipocampo/patología , Proteínas de Homeodominio/genética , Neuropilina-2/genética , Factor 6 de Transcripción de Unión a Octámeros , Técnicas de Placa-Clamp , Embarazo , ARN Mensajero/análisis , Ratas , Ratas Sprague-Dawley , Factores de Transcripción/genética , Proteínas Supresoras de Tumor
9.
J Neurosci ; 21(17): 6626-34, 2001 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-11517252

RESUMEN

Human cortical malformations often result in severe forms of epilepsy. Although the morphological properties of cells within these malformations are well characterized, very little is known about the function of these cells. In rats, prenatal methylazoxymethanol (MAM) exposure produces distinct nodules of disorganized pyramidal-like neurons (e.g., nodular heterotopia) and loss of lamination in cortical and hippocampal structures. Hippocampal nodular heterotopias are prone to hyperexcitability and may contribute to the increased seizure susceptibility observed in these animals. Here we demonstrate that heterotopic pyramidal neurons in the hippocampus fail to express a potassium channel subunit corresponding to the fast, transient A-type current. In situ hybridization and immunohistochemical analysis revealed markedly reduced expression of Kv4.2 (A-type) channel subunits in heterotopic cell regions of the hippocampus of MAM-exposed rats. Patch-clamp recordings from visualized heterotopic neurons indicated a lack of fast, transient (I(A))-type potassium current and hyperexcitable firing. A-type currents were observed on normotopic pyramidal neurons in MAM-exposed rats and on interneurons, CA1 pyramidal neurons, and cortical layer V-VI pyramidal neurons in saline-treated control rats. Changes in A-current were not associated with an alteration in the function or expression of delayed, rectifier (Kv2.1) potassium channels on heterotopic cells. We conclude that heterotopic neurons lack functional A-type Kv4.2 potassium channels and that this abnormality could contribute to the increased excitability and decreased seizure thresholds associated with brain malformations in MAM-exposed rats.


Asunto(s)
Corteza Cerebral/anomalías , Coristoma/fisiopatología , Epilepsia/fisiopatología , Hipocampo/anomalías , Hipocampo/fisiopatología , Canales de Potasio con Entrada de Voltaje , Canales de Potasio/deficiencia , 4-Aminopiridina/farmacología , Potenciales de Acción/efectos de los fármacos , Animales , Corteza Cerebral/fisiopatología , Coristoma/inducido químicamente , Coristoma/patología , Canales de Potasio de Tipo Rectificador Tardío , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Epilepsia/inducido químicamente , Epilepsia/patología , Femenino , Hipocampo/patología , Inmunohistoquímica , Hibridación in Situ , Técnicas In Vitro , Acetato de Metilazoximetanol/análogos & derivados , Técnicas de Placa-Clamp , Potasio/metabolismo , Canales de Potasio/genética , Canales de Potasio/metabolismo , Embarazo , Efectos Tardíos de la Exposición Prenatal , Células Piramidales/efectos de los fármacos , Células Piramidales/metabolismo , Células Piramidales/patología , ARN Mensajero/biosíntesis , Ratas , Canales de Potasio Shab , Canales de Potasio Shal , Corteza Somatosensorial/metabolismo , Tetraetilamonio/farmacología
10.
J Neurophysiol ; 83(6): 3453-61, 2000 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-10848561

RESUMEN

Calcium-activated potassium currents have an essential role in regulating excitability in a variety of neurons. Although it is well established that mature CA1 pyramidal neurons possess a Ca(2+)-activated K(+) conductance (I(K(Ca))) with early and late components, modulation by various endogenous neurotransmitters, and sensitivity to K(+) channel toxins, the properties of I(K(Ca)) on hippocampal interneurons (or immature CA1 pyramidal neurons) are relatively unknown. To address this problem, whole-cell voltage-clamp recordings were made from visually identified interneurons in stratum lacunosum-moleculare (L-M) and CA1 pyramidal cells in hippocampal slices from immature rats (P3-P25). A biphasic calcium-activated K(+) tail current was elicited following a brief depolarization from the holding potential (-50 mV). Analysis of the kinetic properties of I(K(Ca)) suggests that an early current component differs between these two cell types. An early I(K(Ca)) with a large peak current amplitude (200.8 +/- 13.2 pA, mean +/- SE), slow time constant of decay (70.9 +/- 3.3 ms), and relatively rapid time to peak (within 15 ms) was observed on L-M interneurons (n = 88), whereas an early I(K(Ca)) with a small peak current amplitude (112.5 +/- 7.3 pA), a fast time constant of decay (39.4 +/- 1.6 ms), and a slower time-to-peak (within 26 ms) was observed on CA1 pyramidal neurons (n = 85). Removal of extracellular calcium or addition of inorganic Ca(2+) channel blockers (cadmium, nickel, or cobalt) was used to demonstrate the calcium dependence of these currents. Addition of norepinephrine, carbachol, and a variety of channel toxins (apamin, iberiotoxin, verruculogen, paxilline, penitrem A, and charybdotoxin) were used to further distinguish between I(K(Ca)) on these two hippocampal cell types. Verruculogen (100 nM), carbachol (100 microM), apamin (100 nM), TEA (1 mM), and iberiotoxin (50 nM) significantly reduced early I(K(Ca)) on CA1 pyramidal neurons; early I(K(Ca)) on L-M interneurons was inhibited by apamin and TEA. Combined with previous work showing that the firing properties of hippocampal interneurons and pyramidal cells differ, our kinetic and pharmacological data provide strong support for the hypothesis that different types of Ca(2+)-activated K(+) current are present on these two cell types.


Asunto(s)
Hipocampo/fisiología , Interneuronas/fisiología , Canales de Potasio/fisiología , Envejecimiento/fisiología , Animales , Calcio/fisiología , Electrofisiología , Hipocampo/citología , Hipocampo/crecimiento & desarrollo , Técnicas In Vitro , Interneuronas/efectos de los fármacos , Cinética , Microscopía por Video , Neurotoxinas/farmacología , Neurotransmisores/farmacología , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Potasio , Células Piramidales/efectos de los fármacos , Células Piramidales/fisiología , Ratas , Ratas Sprague-Dawley
11.
Epilepsy Res ; 39(2): 87-102, 2000 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-10759297

RESUMEN

Cortical disorganization represents one of the major clinical findings in many children with medically intractable epilepsy. To study the relationship between seizure propensity and abnormal cortical structure, we have begun to characterize an animal model exhibiting aberrant neuronal clusters (heterotopia) and disruption of cortical lamination. In this model, exposing rats in utero to the DNA methylating agent methylazoxymethanol acetate (MAM; embryonic day 15) disrupts the sequence of normal brain development. In MAM-exposed rats, cells in hippocampal heterotopia exhibit neuronal morphology and do not stain with immunohistochemical markers for glia. In hippocampal slices from MAM-exposed animals, extracellular field recordings within heterotopia suggest that these dysplastic cell clusters make synaptic connections locally (i.e. within the CA1 hippocampal subregion) and also make aberrant synaptic contact with neocortical cells. Slice perfusion with bicuculline or 4-aminopyridine leads to epileptiform activity in dysplastic cell clusters that can occur independent of input from CA3. Taken together, our findings suggest that neurons within regions of abnormal hippocampal organization are capable of independent epileptiform activity generation, and can project abnormal discharge to a broad area of neocortex, as well as hippocampus.


Asunto(s)
Encefalopatías/patología , Coristoma/patología , Hipocampo/efectos de los fármacos , Hipocampo/patología , Acetato de Metilazoximetanol/análogos & derivados , Efectos Tardíos de la Exposición Prenatal , 4-Aminopiridina , Animales , Bicuculina , Encefalopatías/complicaciones , Encefalopatías/fisiopatología , Coristoma/complicaciones , Coristoma/fisiopatología , Convulsivantes , Electrofisiología , Epilepsia/inducido químicamente , Epilepsia/etiología , Epilepsia/fisiopatología , Femenino , Hipocampo/fisiopatología , Acetato de Metilazoximetanol/farmacología , Embarazo , Ratas , Ratas Sprague-Dawley , Sinapsis/fisiología
12.
J Neurophysiol ; 82(5): 2262-70, 1999 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-10561404

RESUMEN

Incubation of hippocampal slices in zero-Ca(2+) medium blocks synaptic transmission and results in spontaneous burst discharges. This seizure-like activity is characterized by negative shifts (bursts) in the extracellular field potential and a K(+) wave that propagates across the hippocampus. To isolate factors related to seizure initiation, propagation, and termination, a number of pharmacological agents were tested. K(+) influx and efflux mechanisms where blocked with cesium, barium, tetraethylammonium (TEA), and 4-aminopyridine (4-AP). The effect of the gap junction blockers, heptanol and octanol, on zero-Ca(2+) bursting was evaluated. Neuronal excitability was modulated with tetrodotoxin (TTX), charge screening, and applied electric fields. Glial cell function was examined with a metabolism antagonist (fluroacetate). Neuronal hyperpolarization by cation screening or applied fields decreased burst frequency but did not affect burst amplitude or duration. Heptanol attenuated burst amplitude and duration at low concentration (0.2 mM), and blocked bursting at higher concentration (0.5 mM). CsCl(2) (1 mM) had no effect, whereas high concentrations (1 mM) of BaCl(2) blocked bursting. TEA (25 mM) and low concentration of BaCl(2) (300 microM) resulted in a two- to sixfold increase in burst duration. Fluroacetate also blocked burst activity but only during prolonged application (>3 h). Our results demonstrate that burst frequency, amplitude, and duration can be independently modulated and suggest that neuronal excitability plays a central role in burst initiation, whereas potassium dynamics establish burst amplitude and duration.


Asunto(s)
Calcio/fisiología , Epilepsia/fisiopatología , Hipocampo/fisiología , Neuronas/fisiología , 4-Aminopiridina/farmacología , Animales , Bario/farmacología , Calibración , Cesio/farmacología , Estimulación Eléctrica , Potenciales Evocados/efectos de los fármacos , Potenciales Evocados/fisiología , Hipocampo/fisiopatología , Técnicas In Vitro , Potenciales de la Membrana , Modelos Neurológicos , Neuronas/efectos de los fármacos , Potasio/metabolismo , Ratas , Ratas Sprague-Dawley , Tetraetilamonio/farmacología , Tetrodotoxina/farmacología
13.
Brain Res Dev Brain Res ; 117(2): 213-7, 1999 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-10567739

RESUMEN

Prenatal cocaine exposure can result in neurobehavioral disturbances and structural modifications of the central nervous system. In the present study, cocaine was injected into pregnant rats and the brains of their offspring were examined at the light microscopic level. As adults, cocaine-exposed offspring exhibited subtle, but consistent, hippocampal abnormalities. In particular, the stratum pyramidale (particularly the CA1 region) was interrupted by frequent gaps in lamination, and ectopic pyramidal cells were found in stratum oriens and radiatum.


Asunto(s)
Cocaína/farmacología , Hipocampo/anomalías , Hipocampo/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal , Anomalías Inducidas por Medicamentos/patología , Animales , Movimiento Celular , Femenino , Hipocampo/patología , Embarazo , Células Piramidales/patología , Células Piramidales/fisiología , Ratas , Ratas Sprague-Dawley
14.
Proc Natl Acad Sci U S A ; 96(23): 13518-23, 1999 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-10557353

RESUMEN

Neuropeptide Y (NPY) is an inhibitory neuromodulator expressed abundantly in the central nervous system that is suspected of being an endogenous antiepileptic agent that can control propagation of limbic seizures. Electrophysiological and pharmacological data suggest that these actions of NPY are mediated by G protein-coupled NPY Y2 and NPY Y5 receptors. To determine whether the NPY Y5 receptor (Y5R) is required for normal control of limbic seizures, we examined hippocampal function and responsiveness to kainic acid-induced seizures in Y5R-deficient (Y5R-/-) mice. We report that Y5R-/- mice do not exhibit spontaneous seizure-like activity; however, they are more sensitive to kainic acid-induced seizures. Electrophysiological examination of hippocampal slices from mutant mice revealed normal function, but the antiepileptic effects of exogenously applied NPY were absent. These data demonstrate that Y5R has an important role in mediating NPY's inhibitory actions in the mouse hippocampus and suggest a role for Y5R in the control of limbic seizures.


Asunto(s)
Sistema Límbico/fisiopatología , Receptores de Neuropéptido Y/fisiología , Convulsiones/fisiopatología , Animales , Humanos , Técnicas In Vitro , Inyecciones Intraventriculares , Ácido Kaínico/administración & dosificación , Ácido Kaínico/farmacología , Ratones , Ratones Noqueados , Convulsiones/inducido químicamente
15.
Epilepsia ; 40(7): 811-21, 1999 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-10403203

RESUMEN

In the last decade, the recognition of the high frequency of cortical malformations among patients with epilepsy especially children, has led to a renewed interest in the study of the pathophysiology of cortical development. This field has also been spurred by the recent development of several experimental genetic and non-genetic, primarily rodent, models of cortical malformations. Epileptiform activity in these animals can appear as spontaneous seizure activity in vivo, in vitro hyperexcitability, or reduced seizure susceptibility in vitro and in vivo. In the neonatal freeze lesion model, that mimics human microgyria, hyperexcitability is caused by a reorganization of the network in the borders of the malformation. In the prenatal methylazoxymethanol model, that causes a diffuse cortical malformation, hyperexcitability is associated with alteration of firing properties of discrete neuronal subpopulations together with the formation of bridges between normally unconnected structures. In agreement with clinical evidence, these experimental data suggest that cortical malformations can both form epileptogenic foci and alter brain development in a manner that causes a diffuse hyperexcitability of the cortical network.


Asunto(s)
Corteza Cerebral/anomalías , Modelos Animales de Enfermedad , Epilepsia/etiología , Anomalías Inducidas por Medicamentos/fisiopatología , Animales , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/fisiopatología , Epilepsia/genética , Epilepsia/fisiopatología , Hipocampo/crecimiento & desarrollo , Hipocampo/patología , Hipocampo/fisiopatología , Humanos , Acetato de Metilazoximetanol/análogos & derivados , Acetato de Metilazoximetanol/farmacología , Ratones , Ratones Noqueados , Mitosis/efectos de los fármacos , Mutación , Malformaciones del Sistema Nervioso/genética , Malformaciones del Sistema Nervioso/fisiopatología , Conducción Nerviosa , Vías Nerviosas/anomalías , Vías Nerviosas/fisiopatología , Ratas , Ratas Mutantes , Teratógenos/farmacología
16.
Recent Prog Horm Res ; 53: 163-99, 1998.
Artículo en Inglés | MEDLINE | ID: mdl-9769708

RESUMEN

Neuropeptide Y (NPY), a 36 amino acid neuromodulator that is secreted by neurons throughout the peripheral and central nervous system, has been implicated in the control of many physiological processes. We have begun to examine its role in regulation of appetite, behavior, and excitotoxicity by examining mice that are unable to produce NPY as a consequence of gene inactivation. These mutant mice are remarkably normal when reared under standard vivarium conditions. Despite considerable evidence that NPY plays a central role in stimulating appetite, NPY-deficient mice eat normally, grow normally, and refeed after a fast normally. Furthermore, all of their endocrine responses to fasting are normal. The response of NPY-null mice to diet-induced obesity, chemically induced obesity (monosodium glutamate and gold thioglucose), and genetic-based obesity (lethal yellow agouti, Ay; uncoupling protein-diphtheria toxin transgenics, UCP-DT) were all normal. However, NPY deficiency does partially ameliorate the obesity and all of the adverse endocrine effects of leptin deficiency in ob/ob mice. NPY-null mice as well as mice deficient in both NPY and leptin are more sensitive to leptin, suggesting that NPY may normally have a tonic inhibitory action on leptin-mediated satiety signals. NPY-null mice display the normal voracious feeding response to injected NPY. Thus, the only condition where we have observed a role for NPY in body-weight regulation is in the context of complete leptin deficiency--where absence of NPY is beneficial. The activity and general behavior of NPY-null mice are normal. They appear to have normal spatial and contextual learning ability; however, they manifest more anxiety under some conditions. NPY-null mice occasionally display spontaneous, seizure-like events. They also are less able to terminate seizures induced by GABA receptor antagonists or glutamate receptor agonists. These observations are consistent with previous data suggesting that NPY plays an important role in dampening excitotoxicity.


Asunto(s)
Vida , Neuropéptido Y/fisiología , Animales , Peso Corporal/fisiología , Ratones , Ratones Noqueados , Neuropéptido Y/deficiencia , Neuropéptido Y/genética , Obesidad/fisiopatología
17.
Epilepsy Res ; 32(1-2): 275-85, 1998 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-9761327

RESUMEN

The majority of modern epilepsy research has focused on possible abnormalities in synaptic and intrinsic neuronal properties--as likely epileptogenic mechanisms as well as the targets for developing novel antiepileptic treatments. However, many other processes in the central nervous system contribute to neuronal excitability and synchronization. Regulation of ionic balance is one such set of critical processes, involving a complex array of molecules for moving ions into and out of brain cells--both neurons and glia. Alterations in extracellular-to-intracellular ion gradients can have both direct and indirect effects on neuronal discharge. We have found, for example, that when hippocampal slices are exposed to hypo-osmotic bathing medium, the cells not only swell, but there is also a significant increase in the amplitude of a delayed rectifier potassium current in inhibitory interneurons--an effect that may contribute to the increase in tissue excitability associated with hypo-osmolar treatments. In contrast, antagonists of the chloride co-transporter, furosemide or bumetanide, block epileptiform activity in both in vitro and in vivo preparations. This antiepileptic effect is presumably due to the drugs' ability to block chloride co-transport. Indeed, prolonged tissue exposure to low levels of extracellular chloride have a parallel action. These experiments indicate that manipulation of ionic balance may not only facilitate epileptiform activities, but may also provide insight into new therapeutic strategies to block seizures.


Asunto(s)
Encéfalo/fisiología , Encéfalo/fisiopatología , Epilepsia/fisiopatología , Animales , Humanos , Iones , Modelos Neurológicos , Neuronas/fisiología , Concentración Osmolar , Sinapsis/fisiología
18.
Rev Neurosci ; 9(2): 117-28, 1998.
Artículo en Inglés | MEDLINE | ID: mdl-9711903

RESUMEN

Since its discovery in 1982, neuropeptide Y (NPY), a 36 amino-acid member of the pancreatic polypeptide family, has received considerable attention in the field of neuroscience. Originally isolated from porcine brain /86/, NPY is one of the most abundant and widely distributed peptides in the central nervous system. In the brain, NPY is present in the hypothalamus, limbic structures, cerebral cortex, brainstem and striatum /2,71/. Because of the widespread distribution of NPY, it has been implicated in the modulation of a variety of behaviors, including, but not limited to, circadian rhythms /1/, memory retention /33/, feeding /19,56/, sympathetic control of cardiovascular function /89/ and anxiety /42,43/. These functions have been reviewed elsewhere and will not be discussed in great detail here. The present review is intended to provide an overview of recent work implicating a role for NPY in limbic seizures.


Asunto(s)
Sistema Límbico/fisiopatología , Neuropéptido Y/fisiología , Convulsiones/metabolismo , Convulsiones/fisiopatología , Animales , Humanos , Neuropéptido Y/biosíntesis , Neuropéptido Y/genética , Convulsiones/etiología
19.
J Neurophysiol ; 79(2): 1108-12, 1998 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-9463467

RESUMEN

Whole cell voltage-clamp recordings in rat hippocampal slices were used to investigate the effect of changes in extracellular osmolarity on voltage-activated potassium currents. Currents were evoked from oriens/alveus (O/A) interneurons, hilar interneurons, and mossy cells. Hyposmolar external solutions produced a significant potentiation of K+ current recorded from O/A and hilar interneurons, but not from mossy cells. Hyposmolar solutions also dramatically potentiated the spontaneous excitatory postsynaptic currents recorded from mossy cells. These results suggest that hippocampal excitability can be modulated by the complex actions exerted by changes in extracellular osmolarity.


Asunto(s)
Hipocampo/citología , Soluciones Hipotónicas/farmacología , Interneuronas/efectos de los fármacos , Fibras Musgosas del Hipocampo/efectos de los fármacos , Neuronas/efectos de los fármacos , Potasio/metabolismo , Animales , Células Cultivadas , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Transporte Iónico/efectos de los fármacos , Concentración Osmolar , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley
20.
J Neurosci ; 17(23): 8927-36, 1997 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-9364040

RESUMEN

Neuropeptide Y (NPY) inhibits excitatory synaptic transmission in the hippocampus and is implicated in control of limbic seizures. In the present study, we examined hippocampal function and the response to pharmacologically induced seizures in mutant mice lacking this peptide. In slice electrophysiology studies, no change in normal hippocampal function was observed in NPY-deficient mice compared with normal wild-type littermates. Kainic acid (KA) produced limbic seizures at a comparable latency and concentration in NPY-deficient mice compared with littermates. However, KA-induced seizures progressed uncontrollably and ultimately produced death in 93% of NPY-deficient mice, whereas death was rarely observed in wild-type littermates. Intracerebroventricular NPY infusion, before KA administration, prevented death in NPY-deficient mice. These results suggest a critical role for endogenous NPY in seizure control.


Asunto(s)
Epilepsia/fisiopatología , Hipocampo/fisiología , Neuropéptido Y/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Convulsivantes/toxicidad , Electroencefalografía , Regulación de la Expresión Génica/efectos de los fármacos , Genotipo , Hipocampo/efectos de los fármacos , Ácido Kaínico/toxicidad , Ratones , Ratones Noqueados , Neuropéptido Y/biosíntesis , Neuropéptido Y/deficiencia , Neuropéptido Y/genética , Neuropéptido Y/uso terapéutico , Vía Perforante/efectos de los fármacos , Vía Perforante/fisiopatología , Convulsiones/inducido químicamente , Convulsiones/fisiopatología , Convulsiones/prevención & control , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA