Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biomol Struct Dyn ; 38(4): 1168-1184, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-30898030

RESUMEN

Flavonoids correspond to a major class of polyphenolic phytochemicals with flavone as major parent scaffold. This class of compounds is attributed with very rich nutritional as well as therapeutic values. The present study focuses on a panel of 16 flavonoid molecules that are demonstrated to exhibit various bioactivities like anti-angiogenic, anti-inflammatory as well as possess antioxidant potential. The electronic basis of these bioactivities is rarely explored, and structural basis of flavonoid-induced cyclooxygenase (COX) inhibition has still remained an uncharted area. The current report thus focuses on providing an electronic explanation of these bioactivities using density functional theory-based quantum chemical descriptors. We also attempt to provide a structure-activity relation model for COX by inhibition of these 16 flavonoids using molecular docking. Here, we report molecular dynamics data from 16 flavonoid-COX-2 complexes performed for 50 nanoseconds each that demonstrates key structural and dynamic aspects of flavonoid-based COX inhibition in light of observed experimental facts. Interaction analysis and evaluation of side-chain dynamics presented in current study are well in agreement with the empirical study and is hoped to pave new avenues towards design and development of COX-2 selective chemical agents. Abbreviations2'HFN-2'hydroxy flavonone2D2 dimension3D3 dimension3H7MF3-hydroxy-7-methoxy flavone4'HFN-4'hydroxy flavonone4'MF- 4'methoxy flavone7HFN7-hydroxy flavononeCHARMMChemistry at Harvard Macromolecular MechanicsCOXcyclooxygenaseCOX-1cyclooxygenase-1COX-2cyclooxygenase-2DMdipole momentDPPH- 2, 2diphenyl-1-picryl hydrazineEAelectron affinitiesEGFRepidermal growth factor receptorE-HOMOHighest occupied molecular orbital energyE-LUMOLowest unoccupied molecular orbital energyEPAeicosapentaenoic acidFROG2FRee Online druG conformation generationGAGenetic AlgorithmGROMACSGROningen MAchine for Chemical SimulationsHOMOHighest occupied molecular orbitalIPIonization potentialLOMOLowest unoccupied molecular orbitalMDMolecular dynamicsMOMolecular orbitalNAMDNanoscale Molecular DynamicsNSAIDsNon-Steroidal Anti Inflammatory DrugsNsnanosecondsNVEEnsemble-constant-energy, constant-volume, Constant particle ensemblePDB-IDProtein Data Bank IdentifierPMEParticle Mesh EwaldPyRXPython PrescriptionRMSDRoot-Mean-Square DeviationRMSFRoot-Mean-Square FluctuationRLSreactive lipid speciesROSReactive Oxygen SpeciesSASAsolvent accessible surface areaSMILESsimplified molecular-input line-entry systemSORsuperoxide anion radicalUFFUniversal force fieldVEGFvascular endothelial growth factorVEGFRvascular endothelial growth factor receptorVMDVisual molecular dynamicsCommunicated by Ramaswamy H. Sarma.


Asunto(s)
Flavonoides/química , Flavonoides/farmacología , Ciclooxigenasa 2/química , Inhibidores de la Ciclooxigenasa 2/química , Inhibidores de la Ciclooxigenasa 2/farmacología , Conformación Molecular , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Unión Proteica , Teoría Cuántica , Electricidad Estática , Relación Estructura-Actividad
2.
ACS Omega ; 4(5): 9531-9541, 2019 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-31460043

RESUMEN

Azadirachtin-A (AzaA) from the Indian neem tree (Azadirachta indica) has insecticidal properties; however, its molecular mechanism remains elusive. The "targeted and nontargeted proteomic profiling", metabolomics, matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) imaging, gene expression, and in silico analysis provided clues about its action on Helicoverpa armigera. Fourth instar H. armigera larvae fed on AzaA-based diet (AzaD) suffered from significant mortality, growth retardation, reduced larval mass, complications in molting, and prolonged development. Furthermore, death of AzaD-fed larvae was observed with various phenotypes like bursting, blackening, and half-molting. Liquid chromatography-mass spectrometry (LC-MS) data showed limited catabolic processing of ingested AzaA and dramatic alternations of primary metabolism in H. armigera. MALDI-TOF imaging indicated the presence of AzaA in midgut of H. armigera. In the gut, out of 79 proteins identified, 34 were upregulated, which were related to digestion, immunity, energy production, and apoptosis mechanism. On the other hand, 45 proteins were downregulated, including those from carbohydrate metabolism, lipid metabolism, and energy transfer. In the hemolymph, 21 upregulated proteins were reported to be involved in immunity, RNA processing, and mRNA-directed protein synthesis, while 7 downregulated proteins were implicated in energy transfer, hydrolysis, lipid metabolism, defense mechanisms, and amino acid storage-related functions. Subsequently, six target proteins were identified using labeled AzaA that interacted with whole insect proteins. In silico analysis suggests that AzaA could be efficiently accommodated in the hydrophobic pocket of juvenile hormone esterase and showed strong interaction with active site residues, indicating plausible targets of AzaA in H. armigera. Quantitative polymerase chain reaction analysis suggested differential gene expression patterns and partly corroborated the proteomic results. Overall, data suggest that AzaA generally targets more than one protein in H. armigera and hence could be a potent biopesticide.

3.
Proc Natl Acad Sci U S A ; 116(20): 9953-9958, 2019 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-31036650

RESUMEN

The complement system is highly efficient in targeting pathogens, but lack of its apposite regulation results in host-cell damage, which is linked to diseases. Thus, complement activation is tightly regulated by a series of proteins, which primarily belong to the regulators of complement activation (RCA) family. Structurally, these proteins are composed of repeating complement control protein (CCP) domains where two to four successive domains contribute to the regulatory functions termed decay-accelerating activity (DAA) and cofactor activity (CFA). However, the precise constitution of the functional units and whether these units can be joined to form a larger composition with dual function have not been demonstrated. Herein, we have parsed the functional units for DAA and CFA by constructing chimeras of the decay-accelerating factor (DAF) that exhibits DAA and membrane cofactor protein (MCP) that exhibits CFA. We show that in a four-CCP framework, a functional unit for each of the regulatory activities is formed by only two successive CCPs wherein each participates in the function, albeit CCP2 has a bipartite function. Additionally, optimal activity requires C-terminal domains that enhance the avidity of the molecule for C3b/C4b. Furthermore, by composing a four-CCP DAF-MCP chimera with robust CFA (for C3b and C4b) and DAA (for classical and alternative pathway C3 convertases), named decay cofactor protein, we show that CCP functional units can be linked to design a dual-activity regulator. These data indicate that the regulatory determinants for these two biological processes are distinct and modular in nature.


Asunto(s)
Proteínas del Sistema Complemento/metabolismo , Proteínas del Sistema Complemento/genética , Escherichia coli , Humanos , Proteína Cofactora de Membrana , Pichia , Dominios Proteicos , Ingeniería de Proteínas , Estructura Cuaternaria de Proteína
4.
3 Biotech ; 9(2): 47, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30729071

RESUMEN

The intervention of functional foods as complementary therapeutic approach for the amelioration of diabetes and sugar induced cataractogenesis is more appreciated over the present day chemotherapy agents owing to their nontoxic and increased bioavailability concerns. Dietary flavonoids, a class of bioactive phytochemicals is known to have wide range of biological activities against variety of human ailments. In the present study, we demonstrate anti-cataract effect of eight dietary flavonoids in sugar induced lens organ culture study. We present data on processes like inhibition of glycation-induced lens cloudiness, lens protein aggregation, glycation reaction and advanced glycation end products formation that can act as biochemical markers for this disease. The selected flavonoids were also tested for their aldose reductase (AR) inhibition (experimental and in silico). The molecular dynamics simulation results shed light on mechanistic details of flavonoid induced AR inhibition. The outcome of the present study clearly focuses the significance of kaempferol, taxifolin and quercetin as potential candidates for controlling diabetic cataract.

5.
Amino Acids ; 50(5): 593-607, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29480333

RESUMEN

Selenoproteins are a group of proteins which contain selenocysteine (Sec or U) in their primary structure. Selenoproteins play a critical role in antioxidant defense, hormone metabolism, immune responses and muscle development. The selenoprotein H (SELENOH) is essential in the regulation of gene expression in response to redox status and antioxidant defense. It has Sec residue located in conserved CXXU motif similar to other selenoproteins. However, exact biological function of Sec residue in SELENOH is not known in detail. Therefore, it is essential to understand the structural and functional role of Sec in SELENOH. In the present study, homology modelling and MD simulation were performed to understand the role of Sec residue in SELENOH. The modelled 3D structure of wild-SELENOH along with two mutants (Mut-U44C and Mut-41CS-SC44) was subjected to MD simulation. Based on simulation results, we demonstrate that wild-SELENOH structure is dynamically stabilized by network of intramolecular hydrogen bonding and internal residue contacts facilitated by Sec residue. In contrast, notable differences have been observed in residue contacts and stability in other two mutant structures. Additionally, docking studies revealed that 3PRGRKRK9 motif of wild-SELENOH interacts with HSE and STRE of DNA molecule as observed experimentally. Similar to earlier reports, our sequence analysis study pinpoints conserved 3PRGRKRK9 motif present in SELENOH perform dual role as AT-hook motif and NLS. Overall, the obtained results clearly illustrate Sec residue plays an important role to restore functionally active conformation of SELENOH. The present study broadened our current understanding regarding the role of selenocysteine in protein structure and function.


Asunto(s)
Proteínas de Unión al ADN/química , ADN/química , Simulación de Dinámica Molecular , Selenocisteína/química , Selenoproteínas/química , Secuencias de Aminoácidos , Sustitución de Aminoácidos , ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Mutación Missense , Unión Proteica , Selenocisteína/genética , Selenocisteína/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo
6.
Neuropeptides ; 52: 1-18, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26149638

RESUMEN

Alzheimer's disease is an irreversible, progressive neurodegenerative disorder. Various therapeutic approaches are being used to improve the cholinergic neurotransmission, but their role in AD pathogenesis is still unknown. Although, an increase in tau protein concentration in CSF has been described in AD, but several issues remains unclear. Extensive and accurate analysis of CSF could be helpful to define presence of tau proteins in physiological conditions, or released during the progression of neurodegenerative disease. The amyloid cascade hypothesis postulates that the neurodegeneration in AD caused by abnormal accumulation of amyloid beta (Aß) plaques in various areas of the brain. The amyloid hypothesis has continued to gain support over the last two decades, particularly from genetic studies. Therefore, current research progress in several areas of therapies shall provide an effective treatment to cure this devastating disease. This review critically evaluates general biochemical and physiological functions of Aß directed therapeutics and their relevance.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/terapia , Péptidos beta-Amiloides/metabolismo , Acetilcolina/metabolismo , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/patología , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Humanos , Ovillos Neurofibrilares/metabolismo , Transducción de Señal , Proteínas tau/metabolismo
7.
Amino Acids ; 47(3): 543-59, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25501500

RESUMEN

The human endothelin converting enzyme-1 (hECE-1) is a homodimer linked by a single disulfide bridge and has been identified as an important target for Alzheimer's disease. Structural analysis of hECE-1 dimer could lead to design specific and effective therapies against Alzheimer's disease. Hence, in the present study homology model of transmembrane helix has been constructed and patched with available crystal structure of hECE-1 monomer. Then, membrane-bound whole model of hECE-1 dimer has been developed by considering biophysical properties of membrane proteins. The explicit molecular dynamics simulation revealed that the hECE-1 dimer exhibits conformational restrains and controls total central cavity by regulating the degree of fluctuations in some residues (238-226) for substrate/product entrance/exit sites. In turn, conformational rearrangements of interdomain linkers as well as helices close to the inner surface are responsible for increasing total central cavity of hECE-1 dimer. Further, the model of hECE-1 dimer was docked with Aß1-42 followed by MD simulation to investigate possible orientation and interactions of Aß1-42 in catalytic groove of hECE-1 dimer. The free energy calculations exposed the stability of complex and helped us to identify key residues of hECE-1 involved in interactions with Aß1-42 peptide. Hence, the present study might be useful to understand structural significance of membrane-bound dimeric hECE-1 to design therapies against Alzheimer's disease.


Asunto(s)
Péptidos beta-Amiloides/química , Ácido Aspártico Endopeptidasas/química , Metaloendopeptidasas/química , Modelos Moleculares , Fragmentos de Péptidos/química , Multimerización de Proteína , Péptidos beta-Amiloides/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Enzimas Convertidoras de Endotelina , Humanos , Metaloendopeptidasas/metabolismo , Fragmentos de Péptidos/metabolismo , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína
8.
ScientificWorldJournal ; 2014: 593546, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25544957

RESUMEN

Relative quantification of algC gene expression was evaluated in the multidrug resistant strain Acinetobacter baumannii AIIMS 7 biofilm (3 to 96 h, on polystyrene surface) compared to the planktonic counterparts. Comparison revealed differential algC expression pattern with maximum 81.59-fold increase in biofilm cells versus 3.24-fold in planktonic cells (P < 0.05). Expression levels strongly correlated with specific biofilm stages (scale of 3 to 96 h), coinciding maximum at initial surface attachment stage (9 h) and biofilm maturation stage (48 h). Cloning, heterologous expression, and bioinformatics analyses indicated algC gene product as the bifunctional enzyme phosphomannomutase/phosphoglucomutase (PMM/PGM) of ∼ 53 kDa size, which augmented biofilms significantly in algC clones compared to controls (lacking algC gene), further localized by scanning electron microscopy. Moreover, molecular dynamics analysis on the three-dimensional structure of PMM/PGM (simulated up to 10 ns) revealed enzyme structure as stable and similar to that in P. aeruginosa (synthesis of alginate and lipopolysaccharide core) and involved in constitution of biofilm EPS (extracellular polymeric substances). Our observation on differential expression pattern of algC having strong correlation with important biofilm stages, scanning electron-microscopic evidence of biofilm augmentation taken together with predictive enzyme functions via molecular dynamic (MD) simulation, proposes a new basis of A. baumannii AIIMS 7 biofilm development on inanimate surfaces.


Asunto(s)
Acinetobacter baumannii/fisiología , Proteínas Bacterianas/biosíntesis , Biopelículas/crecimiento & desarrollo , Farmacorresistencia Bacteriana Múltiple/fisiología , Regulación Bacteriana de la Expresión Génica/fisiología , Poliestirenos/química , Propiedades de Superficie
9.
Comput Biol Med ; 43(12): 2063-70, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24290922

RESUMEN

Cysteine protease is known to degrade amyloid beta peptide which is a causative agent of Alzheimer's disease. This cleavage mechanism has not been studied in detail at the atomic level. Hence, a three-dimensional structure of cysteine protease from Xanthomonas campestris was constructed by homology modeling using Geno3D, SWISS-MODEL, and MODELLER 9v7. All the predicted models were analyzed by PROCHECK and PROSA. Three-dimensional model of cysteine protease built by MODELLER 9v7 shows similarity with human cathepsin B crystal structure. This model was then used further for docking and simulation studies. The molecular docking study revealed that Cys17, His87, and Gln88 residues of cysteine protease form an active site pocket similar to human cathepsin B. Then the docked complex was refined by molecular dynamic simulation to confirm its stable behavior over the entire simulation period. The molecular docking and MD simulation studies showed that the sulfhydryl hydrogen atom of Cys17 of cysteine protease interacts with carboxylic oxygen of Lys16 of Aß peptide indicating the cleavage site. Thus, the cysteine protease model from X. campestris having similarity with human cathepsin B crystal structure may be used as an alternate approach to cleave Aß peptide a causative agent of Alzheimer's disease.


Asunto(s)
Péptidos beta-Amiloides/química , Proteínas Bacterianas/química , Proteasas de Cisteína/química , Simulación del Acoplamiento Molecular , Homología Estructural de Proteína , Xanthomonas campestris/enzimología , Catepsina G/química , Humanos
10.
Protein J ; 32(6): 467-76, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23963890

RESUMEN

Mycobacterium tuberculosis is a Gram positive, acid-fast bacteria belonging to genus Mycobacterium, is the leading causative agent of most cases of tuberculosis. The pathogenicity of the bacteria is enhanced by its developed DNA repair mechanism which consists of machineries such as nucleotide excision repair. Nucleotide excision repair consists of excinuclease protein UvrABC endonuclease, multi-enzymatic complex which carries out repair of damaged DNA in sequential manner. UvrC protein is a part of this complex and thus helps to repair the damaged DNA of M. tuberculosis. Hence, structural bioinformatics study of UvrC protein from M. tuberculosis was carried out using homology modeling and molecular docking techniques. Assessment of the reliability of the homology model was carried out by predicting its secondary structure along with its model validation. The predicted structure was docked with the ATP and the interacting amino acid residues of UvrC protein with the ATP were found to be TRP539, PHE89, GLU536, ILE402 and ARG575. The binding of UvrC protein with the DNA showed two different domains. The residues from domain I of the protein VAL526, THR524 and LEU521 interact with the DNA whereas, amino acids interacting from the domain II of the UvrC protein included ARG597, GLU595, GLY594 and GLY592 residues. This predicted model could be useful to design new inhibitors of UvrC enzyme to prevent pathogenesis of Mycobacterium and so the tuberculosis.


Asunto(s)
Proteínas Bacterianas/metabolismo , ADN/metabolismo , Endodesoxirribonucleasas/metabolismo , Mycobacterium tuberculosis/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/química , ADN/química , Reparación del ADN , Endodesoxirribonucleasas/química , Enlace de Hidrógeno , Simulación del Acoplamiento Molecular , Datos de Secuencia Molecular , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/genética , Unión Proteica , Conformación Proteica , Alineación de Secuencia , Análisis de Secuencia de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA