Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Antioxidants (Basel) ; 12(10)2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37891922

RESUMEN

The aim of this review is to explore the relationship between melatonin, free radicals, and non-excitatory amino acids, and their role in stroke and aging. Melatonin has garnered significant attention in recent years due to its diverse physiological functions and potential therapeutic benefits by reducing oxidative stress, inflammation, and apoptosis. Melatonin has been found to mitigate ischemic brain damage caused by stroke. By scavenging free radicals and reducing oxidative damage, melatonin may help slow down the aging process and protect against age-related cognitive decline. Additionally, non-excitatory amino acids have been shown to possess neuroprotective properties, including antioxidant and anti-inflammatory in stroke and aging-related conditions. They can attenuate oxidative stress, modulate calcium homeostasis, and inhibit apoptosis, thereby safeguarding neurons against damage induced by stroke and aging processes. The intracellular accumulation of certain non-excitatory amino acids could promote harmful effects during hypoxia-ischemia episodes and thus, the blockade of the amino acid transporters involved in the process could be an alternative therapeutic strategy to reduce ischemic damage. On the other hand, the accumulation of free radicals, specifically mitochondrial reactive oxygen and nitrogen species, accelerates cellular senescence and contributes to age-related decline. Recent research suggests a complex interplay between melatonin, free radicals, and non-excitatory amino acids in stroke and aging. The neuroprotective actions of melatonin and non-excitatory amino acids converge on multiple pathways, including the regulation of calcium homeostasis, modulation of apoptosis, and reduction of inflammation. These mechanisms collectively contribute to the preservation of neuronal integrity and functions, making them promising targets for therapeutic interventions in stroke and age-related disorders.

3.
J Neurochem ; 165(2): 162-176, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36800503

RESUMEN

Aluminum (Al3+ ) has long been related to neurotoxicity and neurological diseases. This study aims to describe the specific actions of this metal on cellular excitability and neurotransmitter release in primary culture of bovine chromaffin cells. Using voltage-clamp and current-clamp recordings with the whole-cell configuration of the patch clamp technique, online measurement of catecholamine release, and measurements of [Ca2+ ]c with Fluo-4-AM, we have observed that Al3+ reduced intracellular calcium concentrations around 25% and decreased catecholamine secretion in a dose-dependent manner, with an IC50 of 89.1 µM. Al3+ blocked calcium currents in a time- and concentration-dependent manner with an IC50 of 560 µM. This blockade was irreversible since it did not recover after washout. Moreover, Al3+ produced a bigger blockade on N-, P-, and Q-type calcium channels subtypes (69.5%) than on L-type channels subtypes (50.5%). Sodium currents were also inhibited by Al3+ in a time- and concentration-dependent manner, 24.3% blockade at the closest concentration to the IC50 (399 µM). This inhibition was reversible. Voltage-dependent potassium currents were low affected by Al3+ . Nonetheless, calcium/voltage-dependent potassium currents were inhibited in a concentration-dependent manner, with an IC50 of 447 µM. This inhibition was related to the depression of calcium influx through voltage-dependent calcium channels subtypes coupled to BK channels. In summary, the blockade of these ionic conductance altered cellular excitability that reduced the action potentials firing and so, the neurotransmitter release and the synaptic transmission. These findings prove that aluminum has neurotoxic properties because it alters neuronal excitability by inhibiting the sodium currents responsible for the generation and propagation of impulse nerve, the potassium current responsible for the termination of action potentials, and the calcium current responsible for the neurotransmitters release.


Asunto(s)
Calcio , Células Cromafines , Animales , Bovinos , Calcio/metabolismo , Aluminio/toxicidad , Canales de Potasio de Gran Conductancia Activados por el Calcio , Potasio/farmacología , Sodio , Células Cromafines/metabolismo , Potenciales de Acción/fisiología , Catecolaminas
4.
Cereb Cortex ; 33(8): 4498-4511, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36124663

RESUMEN

Microcircuits in the neocortex are functionally organized along layers and columns, which are the fundamental modules of cortical information processing. While the function of cortical microcircuits has focused on neuronal elements, much less is known about the functional organization of astrocytes and their bidirectional interaction with neurons. Here, we show that Cannabinoid type 1 receptor (CB1R)-mediated astrocyte activation by neuron-released endocannabinoids elevate astrocyte Ca2+ levels, stimulate ATP/adenosine release as gliotransmitters, and transiently depress synaptic transmission in layer 5 pyramidal neurons at relatively distant synapses (˃20 µm) from the stimulated neuron. This astrocyte-mediated heteroneuronal synaptic depression occurred between pyramidal neurons within a cortical column and was absent in neurons belonging to adjacent cortical columns. Moreover, this form of heteroneuronal synaptic depression occurs between neurons located in particular layers, following a specific connectivity pattern that depends on a layer-specific neuron-to-astrocyte signaling. These results unravel the existence of astrocyte-mediated nonsynaptic communication between cortical neurons and that this communication is column- and layer-specific, which adds further complexity to the intercellular signaling processes in the neocortex.


Asunto(s)
Astrocitos , Corteza Somatosensorial , Astrocitos/fisiología , Neuronas/fisiología , Transmisión Sináptica/fisiología , Transducción de Señal/fisiología , Sinapsis/fisiología
5.
Acta Neuropathol Commun ; 10(1): 180, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36517890

RESUMEN

Antisense oligonucleotide (ASO) therapy for neurological disease has been successful in clinical settings and its potential has generated hope for Alzheimer's disease (AD). We previously described that ablating SNCA encoding for α-synuclein (αSyn) in a mouse model of AD was beneficial. Here, we sought to demonstrate whether transient reduction of αSyn expression using ASOSNCA could be therapeutic in a mouse model of AD. The efficacy of the ASOSNCA was measured via immunocytochemistry, RT-qPCR and western blotting. To assess spatial learning and memory, ASOSNCA or PBS-injected APP and non-transgenic (NTG) mice, and separate groups of SNCA-null mice, were tested on the Barnes circular maze. Hippocampal slice electrophysiology and transcriptomic profiling were used to explore synaptic function and differential gene expression between groups. Reduction of SNCA transcripts alleviated cognitive deficits in male transgenic animals, but surprisingly, not in females. To determine the functional cause of this differential effect, we assessed memory function in SNCA-null mice. Learning and memory were intact in male mice but impaired in female animals, revealing that the role of αSyn on cognitive function is sex-specific. Transcriptional analyses identified a differentially expressed gene network centered around EGR1, a central modulator of learning and memory, in the hippocampi of SNCA-null mice. Thus, these novel results demonstrate that the function of αSyn on memory differs between male and female brains.


Asunto(s)
Enfermedad de Alzheimer , Cognición , alfa-Sinucleína , Animales , Femenino , Masculino , Ratones , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Modelos Animales de Enfermedad , Expresión Génica , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos
6.
Glia ; 70(2): 368-378, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34726298

RESUMEN

Alzheimer's disease (AD) is associated with senile plaques of beta-amyloid (Aß) that affect the function of neurons and astrocytes. Brain activity results from the coordinated function of neurons and astrocytes in astroglial-neuronal networks. However, the effects of Aß on astroglial and neuronal network function remains unknown. Simultaneously monitoring astrocyte calcium and electric neuronal activities, we quantified the impact of Aß on sensory-evoked cortical activity in a mouse model of AD. At rest, cortical astrocytes displayed spontaneous hyperactivity that was related to Aß density. Sensory-evoked astrocyte responsiveness was diminished in AD mice, depending on the density and distance of Aß, and the responses showed altered calcium dynamics. Hence, astrocytes were spontaneously hyperactive but hypo-responsive to sensory stimulation. Finally, AD mice showed sensory-evoked electrical cortical hyperresponsiveness associated with altered astrocyte-neuronal network interplay. Our findings suggest dysfunction of astrocyte networks in AD mice may dysregulate cortical electrical activity and contribute to cognitive decline.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides/farmacología , Animales , Astrocitos , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos , Neuronas , Placa Amiloide
7.
Toxicology ; 444: 152543, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32858065

RESUMEN

The present work, using chromaffin cells in rat adrenal slices (RCCs), aims to describe what type of ionic current alterations induced by zinc underlies their effects reported on synaptic transmission. Thus, Zn2+ blocked calcium channels of RCCs in a time- and concentration-dependent manner with an IC50 of 391 µM. This blockade was partially reversed upon washout and was greater at more depolarizing holding potentials (i.e. 32 ± 5% at -110 mV, and 43 ± 6% at -50 mV, after 5 min perfusion). In ω-toxins-sensitive calcium channels (N-, P- and Q-types), Zn2+caused a lower blockade of ICa, 33.3%, than in ω-toxins-resistant ones (L-type, 55.3%; and R-type, 90%). This compound inhibited calcium current at all test potentials and shows a shift of the I-V curve to more depolarized values of about 10 mV. The sodium current was not blocked by acute application of high Zn2+concentrations. Voltage-dependent potassium current was marginally affected by high Zn2+ concentrations showing no concentration-dependence. Nevertheless, calcium- and voltage-dependent potassium current was drastically depressed in a dose-dependent manner, with an IC50 of 453 µM. This blockade was related to the prevention of Ca2+ influx through voltage-dependent calcium channels coupled to BK channels. Under current-clamp conditions, RCCs exhibit a resting potential of -50.7 mV, firing spontaneous APs (1-2 spikes/s) generated by the opening of Na+ and Ca2+-channels, and terminated by the activation of voltage and Ca2+-activated K+-channels (BK). We found that the blockade of these ionic currents by Zn2+ led to a drastic alteration of cellular excitability with a depolarization of the membrane potential, the slowdown and broadening of the APs and the severe reduction of the after hyperpolarization (AHP) which led to a decrease in the APs firing frequency. Taken together, these results point to a neurotoxic action evoked by zinc that is associated with changes to cellular excitability by blocking the ionic currents responsible for both the neurotransmitter release and the action potentials firing.


Asunto(s)
Glándulas Suprarrenales/efectos de los fármacos , Canales de Calcio/fisiología , Células Cromafines/efectos de los fármacos , Zinc/toxicidad , Glándulas Suprarrenales/fisiología , Animales , Calcio , Células Cromafines/fisiología , Masculino , Ratas Sprague-Dawley
8.
J Neurochem ; 147(4): 454-476, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30182387

RESUMEN

As the peripheral sympathoadrenal axis is tightly controlled by the cortex via hypothalamus and brain stem, the central pathological features of Hunting's disease, (HD) that is, deposition of mutated huntingtin and synaptic dysfunctions, could also be expressed in adrenal chromaffin cells. To test this hypothesis we here present a thorough investigation on the pathological and functional changes undergone by chromaffin cells (CCs) from 2-month (2 m) to 7-month (7 m) aged wild-type (WT) and R6/1 mouse model of Huntington's disease (HD), stimulated with acetylcholine (ACh) or high [K+ ] (K+ ). In order to do this, we used different techniques such as inmunohistochemistry, patch-clamp, and amperometric recording. With respect to WT cells, some of the changes next summarized were already observed in HD mice at a pre-disease stage (2 m); however, they were more pronounced at 7 m when motor deficits were clearly established, as follows: (i) huntingtin over-expression as nuclear aggregates in CCs; (ii) smaller CC size with decreased dopamine ß-hydroxylase expression, indicating lesser number of chromaffin secretory vesicles; (iii) reduced adrenal tissue catecholamine content; (iv) reduced Na+ currents with (v) membrane hyperpolarization and reduced ACh-evoked action potentials; (v) reduced [Ca2+ ]c transients with faster Ca2+ clearance; (vi) diminished quantal secretion with smaller vesicle quantal size; (vii) faster kinetics of the exocytotic fusion pore, pore expansion, and closure. On the basis of these data, the hypothesis is here raised in the sense that nuclear deposition of mutated huntingtin in adrenal CCs of R6/1 mice could be primarily responsible for poorer Na+ channel expression and function, giving rise to profound depression of cell excitability, altered Ca2+ handling and exocytosis. OPEN PRACTICES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/. Cover Image for this issue: doi: 10.1111/jnc.14201.


Asunto(s)
Células Cromafines/metabolismo , Células Cromafines/patología , Exocitosis , Proteína Huntingtina/biosíntesis , Proteína Huntingtina/genética , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Médula Suprarrenal/metabolismo , Médula Suprarrenal/patología , Animales , Catecolaminas/metabolismo , Humanos , Enfermedad de Huntington/psicología , Cinética , Masculino , Potenciales de la Membrana , Ratones , Ratones Transgénicos , Trastornos del Movimiento/etiología , Trastornos del Movimiento/fisiopatología , Mutación/genética , Desempeño Psicomotor , Canales de Sodio/biosíntesis , Vesículas Sinápticas/patología
9.
J Pharmacol Exp Ther ; 367(1): 28-39, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30006476

RESUMEN

The inhibition of nicotinic acetylcholine receptors (nAChRs) has been proposed as a potential strategy to develop new antidepressant drugs. This is based on the observation that antidepressants that selectively block noradrenaline (NA) or serotonin (5-HT) reuptake also inhibit nAChRs. Dual antidepressants blocking both NA and 5-HT reuptake were proposed to shorten the delay in exerting their clinical effects; whether duloxetine, a prototype of dual antidepressants, also blocks nAChRs is unknown. Here we explored this question in bovine chromaffin cells (BCCs) that express native α3, α5, and α7 nAChRs and in cell lines expressing human α7, α3ß4, or α4ß2 nAChRs. We have found that duloxetine fully blocked the acetylcholine (ACh)-elicited nicotinic currents in BCCs with an IC50 of 0.86 µM. Such blockade seemed to be noncompetitive, voltage dependent, and partially use dependent. The ACh-elicited membrane depolarization, the elevation of cytosolic calcium ([Ca2+]c), and catecholamine release in BCCs were also blocked by duloxetine. This blockade developed slowly, and the recovery of secretion was also slow and gradual. Duloxetine did not affect Na+ or Ca2+ channel currents neither the high-K+-elicited [Ca2+]c transients and secretion. Of interest was that in cell lines expressing human α7, α3ß4, and α4ß2 nAChRs, duloxetine blocked nicotinic currents with IC50 values of 0.1, 0.56, and 0.85 µM, respectively. Thus, in blocking α7 receptors, which are abundantly expressed in the brain, duloxetine exhibited approximately 10-fold to 100- fold higher potency with respect to reported IC50 values for various antidepressant drugs. This may contribute to the antidepressant effect of duloxetine.


Asunto(s)
Acetilcolina/farmacología , Señalización del Calcio/efectos de los fármacos , Células Cromafines/efectos de los fármacos , Clorhidrato de Duloxetina/farmacología , Fenómenos Electrofisiológicos/efectos de los fármacos , Exocitosis/efectos de los fármacos , Receptores Nicotínicos/metabolismo , Antidepresivos/farmacología , Canales de Calcio/metabolismo , Catecolaminas/metabolismo , Células Cromafines/citología , Células Cromafines/metabolismo , Células HEK293 , Humanos , Antagonistas Nicotínicos/farmacología , Canales de Sodio/metabolismo
10.
Pflugers Arch ; 470(10): 1459-1471, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29926228

RESUMEN

Three divalent cations can elicit secretory responses in most neuroendocrine cells, including chromaffin cells. The extent to which secretion is elicited by the cations in intact depolarized cells was Ba2+ > Sr2+ ≥ Ca2+, contrasting with that elicited by these cations in permeabilized cells (Ca2+ > Sr2+ > Ba2+). Current-clamp recordings show that extracellular Sr2+ and Ba2+ cause membrane depolarization and action potentials, which are not blocked by Cd2+ but that can be mimicked by tetra-ethyl-ammonium. When applied intracellularly, only Ba2+ provokes action potentials. Voltage-clamp monitoring of Ca2+-activated K+ channels (KCa) shows that Ba2+ reduces outward currents, which were enhanced by Sr2+. Extracellular Ba2+ increases cytosolic Ca2+ concentrations in Fura-2-loaded intact cells, and it induces long-lasting catecholamine release. Conversely, amperometric recordings of permeabilized cells show that Ca2+ promotes the longest lasting secretion, as Ba2+ only provokes secretion while it is present and Sr2+ induces intermediate-lasting secretion. Intracellular Ba2+ dialysis provokes exocytosis at concentrations 100-fold higher than those of Ca2+, whereas Sr2+ exhibits an intermediate sensitivity. These results are compatible with the following sequence of events: Ba2+ blocks KCa channels from both the outside and inside of the cell, causing membrane depolarization that, in turn, opens voltage-sensitive Ca2+ channels and favors the entry of Ca2+ and Ba2+. Although Ca2+ is less permeable through its own channels, it is more efficient in triggering exocytosis. Strontium possesses both an intermediate permeability and an intermediate ability to induce secretion.


Asunto(s)
Bario/farmacología , Calcio/farmacología , Células Cromafines/metabolismo , Exocitosis , Estroncio/farmacología , Potenciales de Acción , Animales , Calcio/metabolismo , Canales de Calcio/metabolismo , Catecolaminas/metabolismo , Bovinos , Células Cultivadas , Células Cromafines/efectos de los fármacos , Células Cromafines/fisiología , Canales de Potasio Calcio-Activados/metabolismo
11.
Pflugers Arch ; 470(8): 1255-1270, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29721607

RESUMEN

Gasotransmitter hydrogen sulphide (H2S) has emerged as a regulator of multiple physiological and pathophysiological processes throughout. Here, we have investigated the effects of NaHS (fast donor of H2S) and GYY4137 (GYY, slow donor of H2S) on the exocytotic release of catecholamines from fast-perifused bovine adrenal chromaffin cells (BCCs) challenged with sequential intermittent pulses of a K+-depolarizing solution. Both donors caused a concentration-dependent facilitation of secretion. This was not due to an augmentation of Ca2+ entry through voltage-activated Ca2+ channels (VACCs) because, in fact, NaHS and GYY caused a mild inhibition of whole-cell Ca2+ currents. Rather, the facilitation of exocytosis seemed to be associated to an augmented basal [Ca2+]c and the K+-elicited [Ca2+]c transients; such effects of H2S donors are aborted by cyclopiazonic acid (CPA), that causes endoplasmic reticulum (ER) Ca2+ depletion through sarcoendoplasmic reticulum Ca2+ ATPase inhibition and by protonophore carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP), that impedes the ability of mitochondria to sequester cytosolic Ca2+ during cell depolarization. Inasmuch as CPA and FCCP reversed the facilitation of secretion triggered by K+ in the presence of NaHS and GYY, is seems that such facilitation is tightly coupled to Ca2+ handling by the ER and mitochondria. On the basis of these results, we propose that H2S regulates catecholamine secretory responses triggered by K+ in BCCs by (i) mobilisation of ER Ca2+ and (ii) interference with mitochondrial Ca2+ circulation. In so doing, the clearance of the [Ca2+]c transient will be delayed and the Ca2+-dependent trafficking of secretory vesicles will be enhanced to overfill the secretory machinery with new vesicles to enhance exocytosis.


Asunto(s)
Calcio/metabolismo , Células Cromafines/efectos de los fármacos , Exocitosis/efectos de los fármacos , Sulfuro de Hidrógeno/farmacología , Animales , Canales de Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Catecolaminas/metabolismo , Bovinos , Células Cultivadas , Células Cromafines/metabolismo , Citosol/efectos de los fármacos , Citosol/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Morfolinas/farmacología , Compuestos Organotiofosforados/farmacología , Potasio/metabolismo
12.
Pflugers Arch ; 470(1): 53-60, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28866764

RESUMEN

The coexistence of different subtypes of voltage-dependent calcium channels (VDCC) within the same chromaffin cell (CC) and the marked interspecies variability in the proportion of VDCC subtypes that are present in the plasmalemma of the CCs raises the question on their roles in controlling different physiological functions. Particularly relevant seems to be the role of VDCCs in the regulation of the exocytotic neurotransmitter release process, and its tightly coupled membrane retrieval (endocytosis) process since both are Ca2+-dependent processes. This review is focused on the role of Ca2+ influx through L-type VDCC in the regulation of these two processes. It is currently accepted that the different VDCC subtypes (i.e., T, L, N, P/Q, R) contribute to exocytosis proportionally to their density of expression and gating properties. However, the pattern of stimulation defines a preferential role of the different subtypes of VDCC on exocytosis and endocytosis. Thus, L-type channels seem to control catecholamine release induced by prolonged stimuli while fast exocytosis in response to short square depolarizing pulses or action potentials is mediated by Ca2+ entering CCs through P/Q channels. The pattern of stimulation also influences the endocytotic process, and thus, electrophysiological data suggest the sustained Ca2+ entry through slow-inactivating L-type channels could be responsible for the activation of fast endocytosis.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Células Cromafines/metabolismo , Endocitosis , Exocitosis , Potenciales de Acción , Animales , Bloqueadores de los Canales de Calcio/farmacología , Células Cromafines/efectos de los fármacos , Células Cromafines/fisiología , Humanos
13.
Neural Plast ; 2015: 463854, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26075099

RESUMEN

It is currently known that in CNS the extracellular matrix is involved in synaptic stabilization and limitation of synaptic plasticity. However, it has been reported that the treatment with chondroitinase following injury allows the formation of new synapses and increased plasticity and functional recovery. So, we hypothesize that some components of extracellular matrix may modulate synaptic transmission. To test this hypothesis we evaluated the effects of chondroitin sulphate (CS) on excitatory synaptic transmission, cellular excitability, and neuronal plasticity using extracellular recordings in the CA1 area of rat hippocampal slices. CS caused a reversible depression of evoked field excitatory postsynaptic potentials in a concentration-dependent manner. CS also reduced the population spike amplitude evoked after orthodromic stimulation but not when the population spikes were antidromically evoked; in this last case a potentiation was observed. CS also enhanced paired-pulse facilitation and long-term potentiation. Our study provides evidence that CS, a major component of the brain perineuronal net and extracellular matrix, has a function beyond the structural one, namely, the modulation of synaptic transmission and neuronal plasticity in the hippocampus.


Asunto(s)
Región CA1 Hipocampal/fisiología , Sulfatos de Condroitina/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciación a Largo Plazo/efectos de los fármacos , Animales , Región CA1 Hipocampal/efectos de los fármacos , Condroitina ABC Liasa/farmacología , Masculino , Ratas , Ratas Sprague-Dawley
14.
J Neurochem ; 133(4): 511-21, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25683177

RESUMEN

We characterized the ionic currents underlying the cellular excitability and the Ca(2+) -channel subtypes involved in action potential (AP) firing of rat adrenal chromaffin cells (RCCs) preserved in their natural environment, the adrenal gland slices, through the perforated patch-clamp recording technique. RCCs prepared from adrenal slices exhibit a resting potential of -54 mV, firing spontaneous APs (2-3 spikes/s) generated by the opening of Na(+) and Ca(2+) -channels, and terminated by the activation of voltage and Ca(2+) -activated K(+) -channels (BK). Ca(2+) influx via L-type Ca(2+) -channels is involved in reaching threshold potential for AP firing, and is responsible for activation of BK-channels contributing to AP-repolarization and afterhyperpolarization, whereas P/Q-type Ca(2+) -channels are involved only in the repolarization phase. BK-channels carry total outward current during AP-repolarization. Blockade of L-type Ca(2+) -channels reduces BK-current ~60%, whereas blockade of N- or P/Q-type produces little effect. This study demonstrates that Ca(2+) influx through L-type Ca(2+) -channels plays a key role in modulating the threshold potential from RCCs in situ. This study demonstrates that Ca(2+) influx through L-type Ca(2+) channels plays a key role in modulating the threshold potential for action potential firing and activating BK channels contributing to repolarization and afterhyperpolarization from rat adrenal chromaffin cells in situ.


Asunto(s)
Potenciales de Acción/fisiología , Glándulas Suprarrenales/citología , Canales de Calcio/fisiología , Calcio/metabolismo , Células Cromafines/fisiología , Estimulación Eléctrica , Potenciales de Acción/efectos de los fármacos , Animales , Fenómenos Biofísicos/efectos de los fármacos , Biofisica , Cloruro de Cadmio/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Células Cromafines/efectos de los fármacos , Técnicas In Vitro , Masculino , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Potasio/farmacología , Ratas , Ratas Sprague-Dawley , Bloqueadores de los Canales de Sodio/farmacología , Tetraetilamonio/farmacología , Tetrodotoxina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...