Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rev Fish Biol Fish ; 33(2): 317-347, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37122954

RESUMEN

A common goal among fisheries science professionals, stakeholders, and rights holders is to ensure the persistence and resilience of vibrant fish populations and sustainable, equitable fisheries in diverse aquatic ecosystems, from small headwater streams to offshore pelagic waters. Achieving this goal requires a complex intersection of science and management, and a recognition of the interconnections among people, place, and fish that govern these tightly coupled socioecological and sociotechnical systems. The World Fisheries Congress (WFC) convenes every four years and provides a unique global forum to debate and discuss threats, issues, and opportunities facing fish populations and fisheries. The 2021 WFC meeting, hosted remotely in Adelaide, Australia, marked the 30th year since the first meeting was held in Athens, Greece, and provided an opportunity to reflect on progress made in the past 30 years and provide guidance for the future. We assembled a diverse team of individuals involved with the Adelaide WFC and reflected on the major challenges that faced fish and fisheries over the past 30 years, discussed progress toward overcoming those challenges, and then used themes that emerged during the Congress to identify issues and opportunities to improve sustainability in the world's fisheries for the next 30 years. Key future needs and opportunities identified include: rethinking fisheries management systems and modelling approaches, modernizing and integrating assessment and information systems, being responsive and flexible in addressing persistent and emerging threats to fish and fisheries, mainstreaming the human dimension of fisheries, rethinking governance, policy and compliance, and achieving equity and inclusion in fisheries. We also identified a number of cross-cutting themes including better understanding the role of fish as nutrition in a hungry world, adapting to climate change, embracing transdisciplinarity, respecting Indigenous knowledge systems, thinking ahead with foresight science, and working together across scales. By reflecting on the past and thinking about the future, we aim to provide guidance for achieving our mutual goal of sustaining vibrant fish populations and sustainable fisheries that benefit all. We hope that this prospective thinking can serve as a guide to (i) assess progress towards achieving this lofty goal and (ii) refine our path with input from new and emerging voices and approaches in fisheries science, management, and stewardship.

2.
Nature ; 598(7880): 315-320, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34526720

RESUMEN

Despite contributing to healthy diets for billions of people, aquatic foods are often undervalued as a nutritional solution because their diversity is often reduced to the protein and energy value of a single food type ('seafood' or 'fish')1-4. Here we create a cohesive model that unites terrestrial foods with nearly 3,000 taxa of aquatic foods to understand the future impact of aquatic foods on human nutrition. We project two plausible futures to 2030: a baseline scenario with moderate growth in aquatic animal-source food (AASF) production, and a high-production scenario with a 15-million-tonne increased supply of AASFs over the business-as-usual scenario in 2030, driven largely by investment and innovation in aquaculture production. By comparing changes in AASF consumption between the scenarios, we elucidate geographic and demographic vulnerabilities and estimate health impacts from diet-related causes. Globally, we find that a high-production scenario will decrease AASF prices by 26% and increase their consumption, thereby reducing the consumption of red and processed meats that can lead to diet-related non-communicable diseases5,6 while also preventing approximately 166 million cases of inadequate micronutrient intake. This finding provides a broad evidentiary basis for policy makers and development stakeholders to capitalize on the potential of aquatic foods to reduce food and nutrition insecurity and tackle malnutrition in all its forms.


Asunto(s)
Abastecimiento de Alimentos , Internacionalidad , Alimentos Marinos/clasificación , Animales , Dieta Saludable , Femenino , Peces , Salud , Humanos , Masculino , Valor Nutritivo , Carne Roja , Alimentos Marinos/análisis , Poblaciones Vulnerables
3.
Proc Natl Acad Sci U S A ; 116(26): 12907-12912, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31186360

RESUMEN

While the physical dimensions of climate change are now routinely assessed through multimodel intercomparisons, projected impacts on the global ocean ecosystem generally rely on individual models with a specific set of assumptions. To address these single-model limitations, we present standardized ensemble projections from six global marine ecosystem models forced with two Earth system models and four emission scenarios with and without fishing. We derive average biomass trends and associated uncertainties across the marine food web. Without fishing, mean global animal biomass decreased by 5% (±4% SD) under low emissions and 17% (±11% SD) under high emissions by 2100, with an average 5% decline for every 1 °C of warming. Projected biomass declines were primarily driven by increasing temperature and decreasing primary production, and were more pronounced at higher trophic levels, a process known as trophic amplification. Fishing did not substantially alter the effects of climate change. Considerable regional variation featured strong biomass increases at high latitudes and decreases at middle to low latitudes, with good model agreement on the direction of change but variable magnitude. Uncertainties due to variations in marine ecosystem and Earth system models were similar. Ensemble projections performed well compared with empirical data, emphasizing the benefits of multimodel inference to project future outcomes. Our results indicate that global ocean animal biomass consistently declines with climate change, and that these impacts are amplified at higher trophic levels. Next steps for model development include dynamic scenarios of fishing, cumulative human impacts, and the effects of management measures on future ocean biomass trends.


Asunto(s)
Biomasa , Cambio Climático , Océanos y Mares , Animales , Organismos Acuáticos/fisiología , Explotaciones Pesqueras/estadística & datos numéricos , Peces/fisiología , Cadena Alimentaria , Modelos Teóricos
4.
Sci Total Environ ; 651(Pt 2): 1720-1734, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30316090

RESUMEN

Hilsa (Tenualosa ilisha) or river shad is an anadromous fish species widely distributed in the North Indian Ocean, mainly in the Bay of Bengal (BoB). Hilsa is the national fish of Bangladesh and it contributes 10% of the total fish production of the country, with a market value of $1.74 billion. Hilsa also holds a very important place in the economics of West Bengal of India with 12.5% of the catch and also tops the marine capture in Myanmar. During the last two decades Hilsa production from inland waters has been stable, whereas marine yields in the BoB increased substantially. In order to sustainably manage the trans-boundary stock of Hilsa, the taxonomy, distribution, habitat, migration patterns, population dynamics, fisheries and socio-economics aspects of the fishery have been reviewed here. To achieve a successful trans-boundary management for the Hilsa stock, complete ban on undersize fishing, well-targeted temporal and spatial bans, creation of protected areas in strategic points, incentive for Hilsa fishers and ecological restoration of Hilsa habitats and more work on technological development of Hilsa aquaculture are recommended.


Asunto(s)
Conservación de los Recursos Naturales , Explotaciones Pesqueras , Peces/fisiología , Rasgos de la Historia de Vida , Animales , Bangladesh , Bahías , Conservación de los Recursos Naturales/legislación & jurisprudencia , India , Mianmar , Dinámica Poblacional
5.
Sci Total Environ ; 640-641: 1566-1577, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30021321

RESUMEN

Deltas are home to a large and growing proportion of the world's population, often living in conditions of extreme poverty. Deltaic ecosystems are ecologically significant as they support high biodiversity and a variety of fisheries, however these coastal environments are extremely vulnerable to climate change. The Ganges-Brahmaputra-Meghna (Bangladesh/India), the Mahanadi (India), and the Volta (Ghana) are among the most important and populous delta regions in the world and they are all considered at risk of food insecurity and climate change. The fisheries sector is vital for populations that live in the three deltas, as a source of animal protein (in Bangladesh and Ghana around 50-60% of animal protein is supplied by fish while in India this is about 12%) through subsistence fishing, as a source of employment and for the wider economy. The aquaculture sector shows a rapid growth in Bangladesh and India while in Ghana this is just starting to expand. The main exported species differ across countries with Ghana and India dominated by marine fish species, whereas Bangladesh exports shrimps and prawns. Fisheries play a more important part in the economy of Bangladesh and Ghana than for India, both men and women work in fisheries, with a higher proportion of women in the Volta then in the Asian deltas. Economic and integrated modelling using future scenarios suggest that changes in temperature and primary production could reduce fish productivity and fisheries income especially in the Volta and Bangladesh deltas, however these losses could be mitigated by reducing overfishing and improving management. The analysis provided in this paper highlights the importance of applying plans for fisheries management at regional level. Minimizing the impacts of climate change while increasing marine ecosystems resilience must be a priority for scientists and governments before these have dramatic impacts on millions of people's lives.


Asunto(s)
Cambio Climático , Ecosistema , Explotaciones Pesqueras/estadística & datos numéricos , Peces , Abastecimiento de Alimentos , Animales , Bangladesh , Conservación de los Recursos Naturales , Ghana , India
6.
Nat Commun ; 8: 16039, 2017 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-28691710

RESUMEN

Marine reserves are viewed as flagship tools to protect exploited species and to contribute to the effective management of coastal fisheries. Yet, the extent to which marine reserves are globally interconnected and able to effectively seed areas, where fisheries are most critical for food and livelihood security is largely unknown. Using a hydrodynamic model of larval dispersal, we predict that most marine reserves are not interconnected by currents and that their potential benefits to fishing areas are presently limited, since countries with high dependency on coastal fisheries receive very little larval supply from marine reserves. This global mismatch could be reversed, however, by placing new marine reserves in areas sufficiently remote to minimize social and economic costs but sufficiently connected through sea currents to seed the most exploited fisheries and endangered ecosystems.


Asunto(s)
Distribución Animal , Conservación de los Recursos Naturales , Explotaciones Pesqueras , Peces , Modelos Teóricos , Animales , Hidrodinámica , Larva , Movimientos del Agua
7.
Glob Chang Biol ; 22(12): 3927-3936, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27396719

RESUMEN

The Paris Conference of Parties (COP21) agreement renewed momentum for action against climate change, creating the space for solutions for conservation of the ocean addressing two of its largest threats: climate change and ocean acidification (CCOA). Recent arguments that ocean policies disregard a mature conservation research field and that protected areas cannot address climate change may be oversimplistic at this time when dynamic solutions for the management of changing oceans are needed. We propose a novel approach, based on spatial meta-analysis of climate impact models, to improve the positioning of marine protected areas to limit CCOA impacts. We do this by estimating the vulnerability of ocean ecosystems to CCOA in a spatially explicit manner and then co-mapping human activities such as the placement of renewable energy developments and the distribution of marine protected areas. We test this approach in the NE Atlantic considering also how CCOA impacts the base of the food web which supports protected species, an aspect often neglected in conservation studies. We found that, in this case, current regional conservation plans protect areas with low ecosystem-level vulnerability to CCOA, but disregard how species may redistribute to new, suitable and productive habitats. Under current plans, these areas remain open to commercial extraction and other uses. Here, and worldwide, ocean conservation strategies under CCOA must recognize the long-term importance of these habitat refuges, and studies such as this one are needed to identify them. Protecting these areas creates adaptive, climate-ready and ecosystem-level policy options for conservation, suitable for changing oceans.


Asunto(s)
Cambio Climático , Conservación de los Recursos Naturales , Ecosistema , Océanos y Mares , Cadena Alimentaria , Actividades Humanas , Humanos
8.
Glob Chang Biol ; 21(1): 130-43, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25044416

RESUMEN

Understanding long-term, ecosystem-level impacts of climate change is challenging because experimental research frequently focuses on short-term, individual-level impacts in isolation. We address this shortcoming first through an interdisciplinary ensemble of novel experimental techniques to investigate the impacts of 14-month exposure to ocean acidification and warming (OAW) on the physiology, activity, predatory behaviour and susceptibility to predation of an important marine gastropod (Nucella lapillus). We simultaneously estimated the potential impacts of these global drivers on N. lapillus population dynamics and dispersal parameters. We then used these data to parameterize a dynamic bioclimatic envelope model, to investigate the consequences of OAW on the distribution of the species in the wider NE Atlantic region by 2100. The model accounts also for changes in the distribution of resources, suitable habitat and environment simulated by finely resolved biogeochemical models, under three IPCC global emissions scenarios. The experiments showed that temperature had the greatest impact on individual-level responses, while acidification had a similarly important role in the mediation of predatory behaviour and susceptibility to predators. Changes in Nucella predatory behaviour appeared to serve as a strategy to mitigate individual-level impacts of acidification, but the development of this response may be limited in the presence of predators. The model projected significant large-scale changes in the distribution of Nucella by the year 2100 that were exacerbated by rising greenhouse gas emissions. These changes were spatially heterogeneous, as the degree of impact of OAW on the combination of responses considered by the model varied depending on local-environmental conditions and resource availability. Such changes in macro-scale distributions cannot be predicted by investigating individual-level impacts in isolation, or by considering climate stressors separately. Scaling up the results of experimental climate change research requires approaches that account for long-term, multiscale responses to multiple stressors, in an ecosystem context.


Asunto(s)
Ecosistema , Gastrópodos/fisiología , Calor , Concentración de Iones de Hidrógeno , Dinámica Poblacional , Conducta Predatoria/fisiología , Agua de Mar/química , Distribución Animal/fisiología , Animales , Océano Atlántico , Calentamiento Global , Modelos Teóricos
9.
Trends Ecol Evol ; 29(6): 309-16, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24755099

RESUMEN

'Wasp-waist' systems are dominated by a mid trophic-level species that is thought to exert top-down control on its food and bottom-up control on its predators. Sardines, anchovy, and Antarctic krill are suggested examples, and here we use locusts to explore whether the wasp-waist concept also applies on land. These examples also display the traits of mobile aggregations and dietary diversity, which help to reduce the foraging footprint from their large, localised biomasses. This suggests that top-down control on their food operates at local aggregation scales and not at wider scales suggested by the original definition of wasp-waist. With this modification, the wasp-waist framework can cross-fertilise marine and terrestrial approaches, revealing how seemingly disparate but economically important systems operate.


Asunto(s)
Biomasa , Euphausiacea/crecimiento & desarrollo , Peces/crecimiento & desarrollo , Cadena Alimentaria , Saltamontes/crecimiento & desarrollo , Animales , Crecimiento Demográfico
10.
Glob Chang Biol ; 19(8): 2596-607, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23625663

RESUMEN

Climate change has already altered the distribution of marine fishes. Future predictions of fish distributions and catches based on bioclimate envelope models are available, but to date they have not considered interspecific interactions. We address this by combining the species-based Dynamic Bioclimate Envelope Model (DBEM) with a size-based trophic model. The new approach provides spatially and temporally resolved predictions of changes in species' size, abundance and catch potential that account for the effects of ecological interactions. Predicted latitudinal shifts are, on average, reduced by 20% when species interactions are incorporated, compared to DBEM predictions, with pelagic species showing the greatest reductions. Goodness-of-fit of biomass data from fish stock assessments in the North Atlantic between 1991 and 2003 is improved slightly by including species interactions. The differences between predictions from the two models may be relatively modest because, at the North Atlantic basin scale, (i) predators and competitors may respond to climate change together; (ii) existing parameterization of the DBEM might implicitly incorporate trophic interactions; and/or (iii) trophic interactions might not be the main driver of responses to climate. Future analyses using ecologically explicit models and data will improve understanding of the effects of inter-specific interactions on responses to climate change, and better inform managers about plausible ecological and fishery consequences of a changing environment.


Asunto(s)
Cambio Climático , Ecosistema , Peces/fisiología , Modelos Biológicos , Distribución Animal , Animales , Océano Atlántico , Biomasa , Explotaciones Pesqueras , Peces/crecimiento & desarrollo , Dinámica Poblacional , Especificidad de la Especie , Temperatura
11.
Philos Trans R Soc Lond B Biol Sci ; 367(1605): 2979-89, 2012 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-23007086

RESUMEN

Existing methods to predict the effects of climate change on the biomass and production of marine communities are predicated on modelling the interactions and dynamics of individual species, a very challenging approach when interactions and distributions are changing and little is known about the ecological mechanisms driving the responses of many species. An informative parallel approach is to develop size-based methods. These capture the properties of food webs that describe energy flux and production at a particular size, independent of species' ecology. We couple a physical-biogeochemical model with a dynamic, size-based food web model to predict the future effects of climate change on fish biomass and production in 11 large regional shelf seas, with and without fishing effects. Changes in potential fish production are shown to most strongly mirror changes in phytoplankton production. We project declines of 30-60% in potential fish production across some important areas of tropical shelf and upwelling seas, most notably in the eastern Indo-Pacific, the northern Humboldt and the North Canary Current. Conversely, in some areas of the high latitude shelf seas, the production of pelagic predators was projected to increase by 28-89%.


Asunto(s)
Cambio Climático , Explotaciones Pesqueras/métodos , Peces/crecimiento & desarrollo , Biología Marina/métodos , Animales , Tamaño Corporal , Simulación por Computador , Ecosistema , Modelos Biológicos , Océanos y Mares , Fitoplancton/crecimiento & desarrollo , Dinámica Poblacional , Conducta Predatoria , Temperatura
12.
Trends Ecol Evol ; 23(7): 402-9, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18501990

RESUMEN

Regime shifts are abrupt changes between contrasting, persistent states of any complex system. The potential for their prediction in the ocean and possible management depends upon the characteristics of the regime shifts: their drivers (from anthropogenic to natural), scale (from the local to the basin) and potential for management action (from adaptation to mitigation). We present a conceptual framework that will enhance our ability to detect, predict and manage regime shifts in the ocean, illustrating our approach with three well-documented examples: the North Pacific, the North Sea and Caribbean coral reefs. We conclude that the ability to adapt to, or manage, regime shifts depends upon their uniqueness, our understanding of their causes and linkages among ecosystem components and our observational capabilities.


Asunto(s)
Adaptación Fisiológica , Antozoos/fisiología , Conservación de los Recursos Naturales/métodos , Ecosistema , Biología Marina , Animales , Clima , Conservación de los Recursos Naturales/tendencias , Geografía , Océanos y Mares , Dinámica Poblacional , Valor Predictivo de las Pruebas , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...