Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cytometry A ; 99(2): 152-163, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33438373

RESUMEN

Glioblastoma (GBM) is one of the most malignant and devastating brain tumors. The presence of highly therapy-resistant GBM cell subpopulations within the tumor mass, rapid invasion into brain tissues and reciprocal interactions with stromal cells in the tumor microenvironment contributes to an inevitable fatal prognosis for the patients. We highlight the most recent evidence of GBM cell crosstalk with mesenchymal stem cells (MSCs), which occurs either by direct cell-cell interactions via gap junctions and microtubules or cell fusion. MSCs and GBM paracrine interactions are commonly observed and involve cytokine signaling, regulating MSC tropism toward GBM, their intra-tumoral distribution, and immune system responses. MSC-promoted effects depending on their cytokine and receptor expression patterns are considered critical for GBM progression. MSC origin, tumor heterogeneity and plasticity may also determine the outcome of such interactions. Kinins and kinin-B1 and -B2 receptors play important roles in information flow between MSCs and GBM cells. Kinin-B1 receptor activity favors tumor migration and fusion of MSCs and GBM cells. Flow and image (tissue) cytometry are powerful tools to investigate GBM cell and MSC crosstalk and are applied to analyze and characterize several other cancer types.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Células Madre Mesenquimatosas , Línea Celular Tumoral , Humanos , Cininas , Microambiente Tumoral
2.
Cell Mol Neurobiol ; 41(4): 619-649, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-32468442

RESUMEN

The Autism Spectrum Disorder (ASD) consists of a prevalent and heterogeneous group of neurodevelopmental diseases representing a severe burden to affected individuals and their caretakers. Despite substantial improvement towards understanding of ASD etiology and pathogenesis, as well as increased social awareness and more intensive research, no effective drugs have been successfully developed to resolve the main and most cumbersome ASD symptoms. Hence, finding better treatments, which may act as "disease-modifying" agents, and novel biomarkers for earlier ASD diagnosis and disease stage determination are needed. Diverse mutations of core components and consequent malfunctions of several cell signaling pathways have already been found in ASD by a series of experimental platforms, including genetic associations analyses and studies utilizing pre-clinical animal models and patient samples. These signaling cascades govern a broad range of neurological features such as neuronal development, neurotransmission, metabolism, and homeostasis, as well as immune regulation and inflammation. Here, we review the current knowledge on signaling pathways which are commonly disrupted in ASD and autism-related conditions. As such, we further propose ways to translate these findings into the development of genetic and biochemical clinical tests for early autism detection. Moreover, we highlight some putative druggable targets along these pathways, which, upon further research efforts, may evolve into novel therapeutic interventions for certain ASD conditions. Lastly, we also refer to the crosstalk among these major signaling cascades as well as their putative implications in therapeutics. Based on this collective information, we believe that a timely and accurate modulation of these prominent pathways may shape the neurodevelopment and neuro-immune regulation of homeostatic patterns and, hopefully, rescue some (if not all) ASD phenotypes.


Asunto(s)
Trastorno del Espectro Autista/tratamiento farmacológico , Trastorno del Espectro Autista/metabolismo , Terapia Molecular Dirigida , Transducción de Señal , Animales , Trastorno del Espectro Autista/epidemiología , Supervivencia Celular , Citocinas/metabolismo , Humanos , Redes y Vías Metabólicas
3.
Mol Psychiatry ; 26(4): 1044-1059, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33328588

RESUMEN

Scientists and health professionals are exhaustively trying to contain the coronavirus disease 2019 (COVID-19) pandemic by elucidating viral invasion mechanisms, possible drugs to prevent viral infection/replication, and health cares to minimize individual exposure. Although neurological symptoms are being reported worldwide, neural acute and long-term consequences of SARS-CoV-2 are still unknown. COVID-19 complications are associated with exacerbated immunoinflammatory responses to SARS-CoV-2 invasion. In this scenario, pro-inflammatory factors are intensely released into the bloodstream, causing the so-called "cytokine storm". Both pro-inflammatory factors and viruses may cross the blood-brain barrier and enter the central nervous system, activating neuroinflammatory responses accompanied by hemorrhagic lesions and neuronal impairment, which are largely described processes in psychiatric disorders and neurodegenerative diseases. Therefore, SARS-CoV-2 infection could trigger and/or worse brain diseases. Moreover, patients with central nervous system disorders associated to neuroimmune activation (e.g. depression, Parkinson's and Alzheimer's disease) may present increased susceptibility to SARS-CoV-2 infection and/or achieve severe conditions. Elevated levels of extracellular ATP induced by SARS-CoV-2 infection may trigger hyperactivation of P2X7 receptors leading to NLRP3 inflammasome stimulation as a key mediator of neuroinvasion and consequent neuroinflammatory processes, as observed in psychiatric disorders and neurodegenerative diseases. In this context, P2X7 receptor antagonism could be a promising strategy to prevent or treat neurological complications in COVID-19 patients.


Asunto(s)
Encefalopatías/complicaciones , Encefalopatías/patología , COVID-19/complicaciones , COVID-19/patología , Neuroinmunomodulación , Receptores Purinérgicos P2X7/metabolismo , SARS-CoV-2/patogenicidad , Encefalopatías/tratamiento farmacológico , Encefalopatías/metabolismo , COVID-19/inmunología , COVID-19/metabolismo , Humanos , Inflamasomas/inmunología , Inflamasomas/metabolismo , Pandemias , SARS-CoV-2/inmunología
4.
Int J Mol Sci ; 21(11)2020 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-32512908

RESUMEN

With increasing life expectancy, demands for dental tissue and whole-tooth regeneration are becoming more significant. Despite great progress in medicine, including regenerative therapies, the complex structure of dental tissues introduces several challenges to the field of regenerative dentistry. Interdisciplinary efforts from cellular biologists, material scientists, and clinical odontologists are being made to establish strategies and find the solutions for dental tissue regeneration and/or whole-tooth regeneration. In recent years, many significant discoveries were done regarding signaling pathways and factors shaping calcified tissue genesis, including those of tooth. Novel biocompatible scaffolds and polymer-based drug release systems are under development and may soon result in clinically applicable biomaterials with the potential to modulate signaling cascades involved in dental tissue genesis and regeneration. Approaches for whole-tooth regeneration utilizing adult stem cells, induced pluripotent stem cells, or tooth germ cells transplantation are emerging as promising alternatives to overcome existing in vitro tissue generation hurdles. In this interdisciplinary review, most recent advances in cellular signaling guiding dental tissue genesis, novel functionalized scaffolds and drug release material, various odontogenic cell sources, and methods for tooth regeneration are discussed thus providing a multi-faceted, up-to-date, and illustrative overview on the tooth regeneration matter, alongside hints for future directions in the challenging field of regenerative dentistry.


Asunto(s)
Odontogénesis , Regeneración , Diente/fisiología , Animales , Materiales Biocompatibles , Esmalte Dental/fisiología , Portadores de Fármacos , Humanos , Transducción de Señal , Células Madre/metabolismo , Ingeniería de Tejidos , Andamios del Tejido
5.
Front Cell Neurosci ; 13: 476, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31787881

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder characterized by decreased dopamine bioavailability in the substantia nigra and the striatum. Taking into account that adenosine-5'-triphosphate (ATP) and its metabolites are intensely released in the 6-hydroxydopamine (6-OHDA) animal model of PD, screening of purinergic receptor gene expression was performed. Effects of pharmacological P2Y6 or P2X7 receptor antagonism were studied in preventing or reversing hemiparkinsonian behavior and dopaminergic deficits in this animal model. P2X7 receptor antagonism with Brilliant Blue G (BBG) at a dose of 75 mg/kg re-established the dopaminergic nigrostriatal pathway in rats injured with 6-OHDA. Selective P2Y6 receptor antagonism by MRS2578 prevented dopaminergic neuron death in SH-SY5Y cells in vitro and in vivo in the substantia nigra of rats injured with 6-OHDA. Moreover, in vivo analysis showed that both treatments were accompanied by a reduction of microglial activation in the substantia nigra. Altogether, these data provide evidence that antagonism of P2X7 or P2Y6 receptors results in neuroregenerative or neuroprotective effects, respectively, possibly through modulation of neuroinflammatory responses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA