Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cell Neurosci ; 107: 103526, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32622897

RESUMEN

Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid with strong neuroprotective properties that is important for normal excitability and synaptic transmission in the hippocampal neurons. Considering the above, the aim of the present study was to determine whether increasing brain S1P level is able to reverse spatial memory impairment in streptozotocin-diabetic rats. The experiment was carried out on diabetic (n = 22) and nondiabetic (n = 10) male Wistar rats. Diabetes was induced by a single injection of streptozotocin. Eleven weeks later, 11 diabetic animals received injections of THI (S1P lyase inhibitor) for seven days. During the last five days of the experiment spatial reference memory acquisition and retention were tested in the Morris water maze task. The animals were then anaesthetized and samples of the hippocampus, prefrontal cortex, striatum, and cerebellum were excised. The content of S1P and related sphingolipids was measured using a HPLC method. Diabetes induced a depletion of ceramide in the hippocampus and cerebellum that was associated with impaired spatial memory and learning. Administration of THI to the diabetic animals prevented ceramide depletion in the hippocampus and cerebellum, and induced an increase in S1P content in all examined brain structures. These effects were associated with an improvement in spatial memory. We conclude that pharmacological inhibition of S1P lyase partially reverses the impairment in spatial memory induced by chronic hyperglycemia, and that this effect may be related to the prevention of ceramide depletion in the hippocampus and cerebellum, the increase in brain S1P level, or both.


Asunto(s)
Aldehído-Liasas/efectos de los fármacos , Diabetes Mellitus Experimental/tratamiento farmacológico , Trastornos de la Memoria/tratamiento farmacológico , Memoria Espacial/efectos de los fármacos , Estreptozocina/farmacología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/fisiopatología , Hipocampo/efectos de los fármacos , Masculino , Aprendizaje por Laberinto/fisiología , Trastornos de la Memoria/fisiopatología , Ratas Wistar
2.
Cell Physiol Biochem ; 45(1): 67-77, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29316552

RESUMEN

BACKGROUND/AIMS: Sphingosine-1-phosphate (S1P) is a bioactive lysosphingolipid that is found in high concentration in plasma. The majority of plasma S1P is transported bound to HDL and albumin. Although the major sources of circulating S1P have been identified, it remains obscure what is the contribution of different organs/tissues to S1P homeostasis in plasma. Answering this question was the major aim of the present study. METHODS: The experiment was performed on male Wistar rats from whom blood samples were taken from either: 1) femoral vein, right ventricle of the heart, and abdominal aorta (n=15) or 2) hepatic vein, portal vein, and abdominal aorta (n=11). Plasma was fractionated by sequential flotation ultracentrifugation and sphingolipids were quantified by a HPLC method. RESULTS: Compared to the mixed venous blood sampled from the right ventricle, total plasma and lipoprotein-depleted plasma (LPDP) concentration of S1P in the arterial blood was lower. On the other hand, the level of S1P increased across the leg both in plasma and LPDP. The concentration of S1P, sphingosine, and sphinganine in the plasma, HDL, and LPDP isolated from the blood taken from the hepatic vein was markedly higher compared to both arterial and portal blood. CONCLUSIONS: We conclude that, in contrast to HDL-bound S1P, albumin-associated S1P is very labile in the circulation. It is degraded in the pulmonary, and to a lesser extent, gastrointestinal circulation, and released across the liver and skeletal muscle. We also conclude that liver is an important source of HDL-bound S1P and circulating free sphingoid bases.


Asunto(s)
Cromatografía Líquida de Alta Presión , Lisofosfolípidos/sangre , Esfingosina/análogos & derivados , Animales , Aorta Abdominal/química , Aorta Abdominal/metabolismo , Vena Femoral/química , Vena Femoral/metabolismo , Ventrículos Cardíacos/química , Ventrículos Cardíacos/metabolismo , Venas Hepáticas/química , Venas Hepáticas/metabolismo , Lipoproteínas HDL/química , Lipoproteínas HDL/metabolismo , Lipoproteínas LDL/química , Lipoproteínas LDL/metabolismo , Masculino , Vena Porta/química , Vena Porta/metabolismo , Unión Proteica , Ratas , Ratas Wistar , Esfingolípidos/sangre , Esfingolípidos/química , Esfingolípidos/metabolismo , Esfingosina/sangre
3.
Postepy Hig Med Dosw (Online) ; 71(0): 633-648, 2017 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-28791958

RESUMEN

α7-nACh is one of the major nicotinic cholinergic receptor subtypes found in the brain. It is broadly expressed in the hippocampal and cortical neurons, the regions which play a key role in memory formation. Although α7-nACh receptors may serve as postsynaptic receptors mediating classical neurotransmission, they usually function as presynaptic modulators responsible for the release of other neurotransmitters, such as glutamate, γ-aminobutyric acid, dopamine, and norepinephrine. They can, therefore, affect a wide array of neurobiological functions. In recent years, research has found that a large number of agonists and positive allosteric modulators of α7-nAChR induce beneficial effects on learning and memory. Consistently, mice deficient in chrna7 (the gene encoding α7-nAChR protein), are characterized by memory deficits. In addition, decreased expression and function of α7-nAChR is associated agoniwith many neurological diseases including schizophrenia, bipolar disorder, learning disability, attention deficit hyperactivity disorder, Alzheimer disease, autism, and epilepsy. In the recent years many animal experiments and clinical trials using α7-nAChR ligands were conducted. The results of these studies strongly indicate that agonists and positive allosteric modulators of α7-nAChR are promising therapeutic agents for diseases associated with cognitive deficits.


Asunto(s)
Hipocampo/metabolismo , Memoria , Trastornos Mentales/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7 , Animales , Hipocampo/fisiología , Humanos
4.
J Pharmacol Exp Ther ; 343(1): 198-205, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22798198

RESUMEN

The present study was carried out to examine whether acute experimental myocardial infarction affects the sympathetic transmission to vessels and the heart of pithed rats via a presynaptic mechanism and, if so, to check whether inhibitory presynaptic cannabinoid (CB) receptors and endocannabinoids are involved in this response. In pithed and vagotomized rats, electrical stimulation (0.75 Hz; 1 ms; 50 V; 5 or 15 pulses for increases in heart rate or blood pressure, respectively) of the preganglionic sympathetic nerve fibers or intravenous injection of isoprenaline (0.1 nmol/kg) or noradrenaline (1 nmol/kg) increased heart rate and blood pressure by approximately 50 beats/min and 40 mm Hg, respectively. Ligation of the left coronary artery reduced the electrically (as opposed to the chemically) induced tachycardic and pressor responses by approximately 30 to 40%. The inhibitory effect of myocardial infarction was prevented by the CB(1) receptor antagonist rimonabant but not by the CB(2) receptor antagonist N-[(1S)-endo-1,3,3-trimethyl-bicyclo[2.2.1]heptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyra-zole-3-carboxamide (SR144528) and the transient receptor potential vanilloid 1 receptor antagonist capsazepine. The inhibitory effect of myocardial infarction was slightly enhanced by the inhibitors of anandamide and 2-arachidonyl glycerol degradation, 3'-(aminocarbonyl)[1,1'-biphenyl]-3-yl)-cyclohexylcarbamate (URB597) and 4-nitrophenyl-4-(dibenzo[d][1,3]dioxol-5-yl(hydroxy)methyl)piperidine-1-carboxylate (JZL184), respectively. Rimonabant increased myocardial infarction-induced mortality. Our results demonstrate that during the early phase of myocardial infarction the activation of presynaptic CB(1) receptors by endogenously formed cannabinoids contributes to the inhibition of the neurogenic tachycardic and vasopressor responses. Thus, the CB(1) receptor-mediated inhibition of excessive noradrenaline release from the sympathetic nerve fibers innervating the heart and vessels might play a protective role in myocardial ischemia.


Asunto(s)
Presión Sanguínea/fisiología , Infarto del Miocardio , Terminales Presinápticos/fisiología , Receptor Cannabinoide CB1/fisiología , Taquicardia/prevención & control , Vasoconstricción/fisiología , Animales , Frecuencia Cardíaca/fisiología , Masculino , Infarto del Miocardio/fisiopatología , Ratas , Ratas Wistar , Taquicardia/fisiopatología
5.
J Pharmacol Exp Ther ; 326(3): 912-9, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18567834

RESUMEN

Methanandamide (MAEA), the stable analog of the endocannabinoid anandamide, has been proven in Xenopus oocytes to allosterically inhibit the function of the alpha7-nicotinic acetylcholine receptors (nAChRs) in a cannabinoid (CB) receptor-independent manner. The present study aimed at demonstrating that this mechanism can be activated in vivo. In anesthetized and vagotomized pithed rats treated with atropine, we determined the tachycardic response to electrical stimulation of preganglionic sympathetic nerves via the pithing rod or to i.v. nicotine (0.7 micromol/kg) activating nAChRs on the cardiac postganglionic sympathetic neurons. MAEA (3 and 10 micromol/kg) inhibited the electrically induced tachycardia (maximally by 15-20%; abolished by the CB(1) receptor antagonist AM 251 [N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide]; 3 micromol/kg) in pentobarbitone-anesthetized pithed rats, but not in urethane-anesthetized pithed rats, which, thus, are suitable to study the CB(1) receptor-independent inhibition of nicotine-evoked tachycardia. The subunit-nonselective nAChR antagonist hexamethonium (100 micromol/kg) and the selective alpha7-subunit antagonist methyllycaconitine (MLA; 3 and 10 micromol/kg) decreased the nicotine-induced tachycardia by 100 and 40%, respectively (maximal effects), suggesting that nAChRs containing the alpha7-subunit account for 40% of the nicotine-induced tachycardia. MAEA (3 micromol/kg) produced an AM 251-insensitive inhibition (maximum again by 40%) of the nicotine-induced tachycardia. Simultaneous or sequential coadministration of MLA and MAEA inhibited the nicotine-induced tachycardia to the same extent (maximally by 40%) as each of the drugs alone. In conclusion, according to nonadditivity of the effects, MAEA mediates in vivo inhibition by the same receptors as MLA, namely alpha7-subunit-containing nAChRs, although at an allosteric instead of the orthosteric site.


Asunto(s)
Ácidos Araquidónicos/química , Ácidos Araquidónicos/farmacología , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/fisiología , Receptores Nicotínicos/fisiología , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/fisiología , Animales , Relación Dosis-Respuesta a Droga , Frecuencia Cardíaca/efectos de los fármacos , Frecuencia Cardíaca/fisiología , Masculino , Nicotina/farmacología , Subunidades de Proteína/agonistas , Ratas , Ratas Wistar , Receptor Nicotínico de Acetilcolina alfa 7
6.
Postepy Hig Med Dosw (Online) ; 62: 174-84, 2008 May 08.
Artículo en Polaco | MEDLINE | ID: mdl-18464680

RESUMEN

Cannabinoids, substances derived from Cannabis sativa, have been used by humans as therapeutic agents for thousands of years. They act through the cannabinoid CB(1), CB(2), vanilloid TRPV1, and the as yet undefined putative endothelial cannabinoid receptors. Intensive research on the influence of cannabinoids on the cardiovascular system has been conducted since the 1990s after the discovery that cannabinoids are involved in hypotension connected with septic, cardiogenic, and hemorrhagic shock. One cannot exclude the future possibility of using cannabinoids as new therapeutic agents in diseases of the cardiovascular system. In the present paper the mechanisms of cannabinoids on heart failure are described. In the acute phase of myocardial infarction, cannabinoids protect the endothelium of coronary vessels and decrease the heart's necrotic area and the risk of arrhythmia. Cannabinoids also act in the chronic phase of myocardial infarction in the process of the heart remodeling. However, the present knowledge of the effects of cannabinoids on the acute and chronic phases of myocardial infarction and the possibility of using these agents in cardiovascular disease therapy is still insufficient.


Asunto(s)
Cannabinoides/farmacología , Endotelio Vascular/efectos de los fármacos , Insuficiencia Cardíaca/tratamiento farmacológico , Remodelación Ventricular/efectos de los fármacos , Cannabinoides/uso terapéutico , Humanos , Receptor Cannabinoide CB1/efectos de los fármacos , Receptor Cannabinoide CB2/efectos de los fármacos
7.
Shock ; 26(5): 510-5, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17047523

RESUMEN

A supersensitivity of the beta-adrenoceptor-mediated chronotropic response has been demonstrated in atria isolated from rats subjected to septic shock. Our study was undertaken to investigate whether bacterial endotoxin/LPS affects the increase in heart rate induced by beta-adrenoceptor agonists in the rat also in vivo. In pithed and vagotomized rats, the nonselective beta-adrenoceptor agonist isoprenaline (0.05-0.15 nmol/kg) and agonists at the high- and low-affinity state of beta1-adrenoceptors, that is, prenalterol (0.3-3 nmol/kg) and (+/-)-4-[3-[(1,1-dimethylethyl)amino]-2-hydroxypropoxy]-1,3-dihydro-2H-benzimidazole-2-one (CGP 12177; 3-6 nmol/kg), respectively, and at beta2-adrenoceptors, that is, fenoterol (1-5 nmol/kg), increased heart rate by 50 to 60 beats/min. Administration of LPS (0.4, 1, and 1.5 mg/kg), under continuous infusion of vasopressin, dose-dependently amplified the chronotropic response to isoprenaline, prenalterol, and fenoterol (by 80%, 50%, and 100%, respectively) but not to CGP 12177. The beta2-adrenoceptor antagonist erythro-(+/-)-1-(7-methylindan-4-yloxy)-3-isopropylaminobutan-2-ol (ICI 118551 0.1 mumol/kg) did not affect the chronotropic responses of isoprenaline, fenoterol, and prenalterol under non-endotoxic conditions, but abolished the potentiation of tachycardia produced by LPS (1.5 mg/kg). The beta1-adrenoceptor antagonist (+/-)-2-hydroxy-5-[2-[[2-hydroxy-3-[4-[1-methyl-4-(trifluoromethyl)-1H-imidazol-2-yl]-phenoxy]propyl]-amino]ethoxy]-benzamide CGP 20712A; 0.1 mumol/kg almost completely reduced the chronotropic effects of isoprenaline, fenoterol, and prenalterol both in control rats and in animals exposed to LPS (1.5 mg/kg). We conclude that LPS sensitizes cardiac beta-adrenoceptors by recruiting functionally active beta2-adrenoceptors, but the amplification of tachycardia occurs only when both beta1- and beta2-adrenoceptors are concomitantly activated. The pithed rat may serve as a model to examine the beta-adrenoceptor supersensitivity in vivo.


Asunto(s)
Miocardio/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Choque Séptico/metabolismo , Agonistas Adrenérgicos beta/farmacología , Antagonistas Adrenérgicos beta/farmacología , Animales , Fenómenos Fisiológicos Cardiovasculares/efectos de los fármacos , Fenoterol/farmacología , Frecuencia Cardíaca/efectos de los fármacos , Isoproterenol/efectos adversos , Lipopolisacáridos , Masculino , Prenalterol/farmacología , Propanolaminas/farmacología , Ratas , Ratas Wistar , Receptores Adrenérgicos beta 2/efectos de los fármacos , Choque Séptico/tratamiento farmacológico , Choque Séptico/fisiopatología , Taquicardia/inducido químicamente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...