Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 947: 174691, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38992383

RESUMEN

A comprehensive understanding of carbon cycling pathways in the soil-plant system is needed to develop models that accurately predict global carbon reservoir responses to anthropogenic perturbations. Honey is a carbon-rich natural food produced by wild and managed pollinating insects all over the world; the composition of a single sample is a function of millions of pollinator-plant interactions. We studied the 13C/12C and Δ14C of 121 honey samples sourced from the United States, and found a significant older carbon contribution. The effect is observed from 25 to 45° latitude, not correlated with 13C/12C, and consistent with a previously published study on European honeys. In specific cases, the measured values were up to 20 ‰ (Δ14C) higher than the expected atmospheric 14CO2 value for the given year, which shows a significant older carbon contribution. We hypothesize that the older carbon is from plant liquids derived in part from soil carbon or stored nonstructural carbohydrates from plants, which shifts the calibrated age of the sample by 5 years or more. Our work is the first to describe the widespread occurrence of older carbon in honey and shows that radiocarbon measurements can be a powerful tool to trace carbon allocations in terrestrial food webs and detect the atmosphere-soil-plant carbon cycle contributions.


Asunto(s)
Isótopos de Carbono , Miel , Plantas , Miel/análisis , Isótopos de Carbono/análisis , Plantas/metabolismo , Monitoreo del Ambiente/métodos , Carbono/análisis , Ciclo del Carbono , Estados Unidos , América del Norte , Cadena Alimentaria , Suelo/química
2.
Sci Rep ; 14(1): 11288, 2024 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760438

RESUMEN

Juveniles of three cyprinids with various diets and habitat preferences were collected from the Szamos River (Hungary) during a period of pollution in November 2013: the herbivorous, benthic nase (Chondrostoma nasus), the benthivorous, benthic barbel (Barbus barbus), and the omnivorous, pelagic chub (Squalius cephalus). Our study aimed to assess the accumulation of these elements across species with varying diets and habitat preferences, as well as their potential role in biomonitoring efforts. The Ca, K, Mg, Na, Cd, Cr, Cu, Fe, Mn, Pb, Sr, and Zn concentration was analyzed in muscle, gills, and liver using MP-AES. The muscle and gill concentrations of Cr, Cu, Fe, and Zn increased with trophic level. At the same time, several differences were found among the trace element patterns related to habitat preferences. The trace elements, including Cd, Pb, and Zn, which exceeded threshold concentrations in the water, exhibited higher accumulations mainly in the muscle and gills of the pelagic chub. Furthermore, the elevated concentrations of trace elements in sediments (Cr, Cu, Mn) demonstrated higher accumulation in the benthic nase and barbel. Our findings show habitat preference as a key factor in juvenile bioindicator capability, advocating for the simultaneous use of pelagic and benthic juveniles to assess water and sediment pollution status.


Asunto(s)
Cyprinidae , Ecosistema , Oligoelementos , Contaminantes Químicos del Agua , Animales , Cyprinidae/metabolismo , Contaminantes Químicos del Agua/análisis , Oligoelementos/análisis , Oligoelementos/metabolismo , Monitoreo del Ambiente/métodos , Dieta , Branquias/metabolismo , Ríos , Contaminación del Agua/análisis
3.
Heliyon ; 9(3): e13717, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36873485

RESUMEN

Unrecorded alcohol has been linked to illness above and beyond that caused by ethanol alone because of the presence of toxic contaminants. While it can be found in all countries, consumption is high in Albania, where it is frequently consumed as a fruit brandy known as rakia. Among the contaminants identified previously in such products, metals including lead have been detected at levels posing a risk to health but there is little information on their presence in rakia. To fill this gap, we measured the level of ethanol and 24 elements among them toxic metals in 30 Albanian rakia samples. We found that 63.3% of rakia samples had ethanol concentration above 40% v/v. We also showed that there was a significant difference between the measured [mean: 46.7% v/v, interquartile range (IQR): 43.4-52.1% v/v] and reported (mean: 18.9% v/v, IQR: 17.0-20.0% v/v) concentrations of ethanol in rakia. Among the metals detected, aluminium, copper, iron, manganese, lead, and zinc were present in rakia samples at concentrations ranging between 0.013 and 0.866 mg/l of pure alcohol (pa), 0.025-31.629 mg/l of pa, 0.004-1.173 mg/l of pa, 0.185-45.244 mg/l of pa, 0.044-1.337 mg/l of pa, and 0.004-10.156 mg/l of pa, respectively. Copper and lead were found to be the greatest concern posing a potential public health risk. Although the estimated daily intake of these heavy metals from unrecorded rakia was below their toxicological threshold, the concentrations of lead and copper exceeded their limit value of 0.2 and 2.0 mg/l of pa specified for spirits in 33% and 90% of samples, respectively. Therefore, the possibility of adverse health effects cannot be excluded completely. Our findings highlight the need for action by policymakers against the risks posed by these products in Albania.

4.
PLoS One ; 17(4): e0266447, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35395053

RESUMEN

Spinal deformity is a serious economic and animal welfare problem in intensive fish farming systems, which will be a significant unsolved problem for the fish sector. The aim of this study was to determine the relative expression of genes (Akt1 substrate 1, Calreticulin, Collagen type I alpha 2 chain, Corticotropin-releasing hormone, Chromodomain-Helicase DNA-binding, Growth hormone, Insulin like growth factor 1, Myostatin, Sine oculis-related homeobox 3, Toll-like receptor 2) in different tissues associated with spinal deformity and to determine the macroelement (calcium, magnesium, phosphorus, potassium, sodium, sulfur) and microelement (barium, copper, iron, manganese, strontium, zinc) content of spine in healthy and deformed common carps (Cyprinus carpio) in Hungary. The mRNA levels of the genes were measured in 7 different tissues (abdominal fat, blood, brain, dorsal muscle, genitals, heart, liver) by qRT-PCR. Correlations between gene expression and element content were analyzed by using linear regression and Spearman rank correlation. In a total of 15 cases, we found a statistically significant connection between gene expression in a tissue and the macro- or microelement content of the spine. In these contexts, the genes Akt1 substrate 1 (3), Collagen type I alpha 2 chain (2), Corticotropin-releasing hormone (4), Insulin-like growth factor 1 (4), and Myostatin (2), the tissue's blood (3), brain (6), heart (5), and liver (1), the macroelements sodium (4), magnesium (4), phosphorus (1) and sulfur (2) as well as the microelement iron (4) were involved. We also found statistically significant mRNA level differences between healthy and deformed common carps in tissues that were not directly affected by the deformation. Based on our results, genes regulating the nervous system and growth, elements, and tissues are the most associated components in the phenomenon of spinal deformity. With our study, we wish to give direction to and momentum for the exploration of these complex processes.


Asunto(s)
Carpas , Animales , Carpas/genética , Colágeno Tipo I , Hormona Liberadora de Corticotropina/genética , Hierro , Magnesio , Miostatina , Sistema Nervioso , Fósforo , ARN Mensajero/genética , Sodio , Azufre
5.
Sci Total Environ ; 808: 152044, 2022 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-34856271

RESUMEN

In this paper, we present the time-dependent elemental composition and AMS radiocarbon dating results of 36 rape, sunflower and forest honey samples, collected between 1985 and 2018 in geographically close locations. Based on the elemental information, we conclude that bee products regardless the type provide useful environmental information of the previous decades, such as the decreasing trend of airborne Pb emission can be traced. However, radiocarbon results agree less with the atmospheric bomb peak. Random offsets were observed in the specific radiocarbon activity of the honey samples indicating that rape, sunflower and forest honey samples are not as reliable materials for radiocarbon dating as acacia honeys. The radiocarbon results show that the rape, sunflower and forest honey samples can contain non-photosynthetic carbon, presumably derived from the soil. Thus, the complex application of honey samples for environmental reconstruction requires the species-separated investigation of bee products to reveal their adaptability for assessment approaches.


Asunto(s)
Helianthus , Miel , Violación , Animales , Abejas , Carbono , Monitoreo del Ambiente , Bosques , Miel/análisis , Hungría
6.
mSphere ; 6(5): e0071021, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34643421

RESUMEN

The antifungal resistance threat posed by Candida auris necessitates bold and innovative therapeutic options. Farnesol is a quorum-sensing molecule with a potential antifungal and/or adjuvant effect; it may be a promising candidate in alternative treatment regimens. To gain further insights into the farnesol-related effect on C. auris, genome-wide gene transcription analysis was performed using transcriptome sequencing (RNA-Seq). Farnesol exposure resulted in 1,766 differentially expressed genes. Of these genes, 447 and 304 genes with at least 1.5-fold increase or decrease in transcription, respectively, were selected for further investigation. Genes involved in morphogenesis, biofilm events (maturation and dispersion), gluconeogenesis, iron metabolism, and regulation of RNA biosynthesis showed downregulation, whereas those related to antioxidative defense, transmembrane transport, glyoxylate cycle, fatty acid ß-oxidation, and peroxisome processes were upregulated. In addition, farnesol treatment increased the transcription of certain efflux pump genes, including MDR1, CDR1, and CDR2. Growth, measured by the change in the number of CFU, was significantly inhibited within 2 h of the addition of farnesol (5.8 × 107 ± 1.1 × 107 and 1.1 × 107 ± 0.3 × 107 CFU/ml for untreated control and farnesol-exposed cells, respectively) (P < 0.001). In addition, farnesol treatment caused a significant reduction in intracellular iron (152.2 ± 21.1 versus 116.0 ± 10.0 mg/kg), manganese (67.9 ± 5.1 versus 18.6 ± 1.8 mg/kg), and zinc (787.8 ± 22.2 versus 245.8 ± 34.4 mg/kg) (P < 0.05 to 0.001) compared to untreated control cells, whereas the level of cooper was significantly increased (274.6 ± 15.7 versus 828.8 ± 106.4 mg/kg) (P < 0.001). Our data demonstrate that farnesol significantly influences the growth, intracellular metal ion contents, and gene transcription related to fatty acid metabolism, which could open new directions in developing alternative therapies against C. auris. IMPORTANCE Candida auris is a dangerous fungal pathogen that causes outbreaks in health care facilities, with infections associated with a high mortality rate. As conventional antifungal drugs have limited effects against the majority of clinical isolates, new and innovative therapies are urgently needed. Farnesol is a key regulator molecule of fungal morphogenesis, inducing phenotypic adaptations and influencing biofilm formation as well as virulence. Alongside these physiological modulations, it has a potent antifungal effect alone or in combination with traditional antifungals, especially at supraphysiological concentrations. However, our knowledge about the mechanisms underlying this antifungal effect against C. auris is limited. This study has demonstrated that farnesol enhances the oxidative stress and reduces the fungal survival strategies. Furthermore, it inhibits manganese, zinc transport, and iron metabolism as well as increases fungal intracellular copper content. In addition, metabolism was modulated toward ß-oxidation. These results provide definitive explanations for the observed antifungal effects.


Asunto(s)
Candida auris/efectos de los fármacos , Candida auris/genética , Candida auris/fisiología , Farnesol/farmacología , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Antifúngicos/farmacología , Biopelículas/efectos de los fármacos , Farmacorresistencia Fúngica/genética , Redes y Vías Metabólicas/efectos de los fármacos , Redes y Vías Metabólicas/genética , Pruebas de Sensibilidad Microbiana , Percepción de Quorum , Activación Transcripcional/efectos de los fármacos , Virulencia/efectos de los fármacos , Virulencia/genética
7.
J Fungi (Basel) ; 7(7)2021 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-34356919

RESUMEN

The glucocorticoid betamethasone (BM) has potent anti-inflammatory and immunosuppressive effects; however, it increases the susceptibility of patients to superficial Candida infections. Previously we found that this disadvantageous side effect can be counteracted by menadione sodium bisulfite (MSB) induced oxidative stress treatment. The fungus specific protein phosphatase Z1 (CaPpz1) has a pivotal role in oxidative stress response of Candida albicans and was proposed as a potential antifungal drug target. The aim of this study was to investigate the combined effects of CaPPZ1 gene deletion and MSB treatment in BM pre-treated C. albicans cultures. We found that the combined treatment increased redox imbalance, enhanced the specific activities of antioxidant enzymes, and reduced the growth in cappz1 mutant (KO) strain. RNASeq data demonstrated that the presence of BM markedly elevated the number of differentially expressed genes in the MSB treated KO cultures. Accumulation of reactive oxygen species, increased iron content and fatty acid oxidation, as well as the inhibiting ergosterol biosynthesis and RNA metabolic processes explain, at least in part, the fungistatic effect caused by the combined stress exposure. We suggest that the synergism between MSB treatment and CaPpz1 inhibition could be considered in developing of a novel combinatorial antifungal strategy accompanying steroid therapy.

8.
Insects ; 12(7)2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34202123

RESUMEN

The biggest threat to beekeeping is varroosis caused by the mite Varroa destructor. Chemicals available to treat this fatal disease may present problems of resistance or inconsistent efficacy. Recently, lithium chloride has appeared as a potential alternative. To date, the amount of residue lithium treatments may leave in honeybee products is poorly understood. Honeybees were fed with 25 mM lithiated sugar syrup, which was used in earlier studies. The accumulation and elimination of the lithium were monitored in bees and their products for 22 days. Lithium concentration increased in the entire body of the bees to day 4 post-treatment and then recovered rapidly to the control level. Lithium exposure was found to affect uncapped honey in the short term (<16 days), but ripe (capped) honey measured at the end of the trial remained affected. On the other hand, lithium treatment left beeswax lithium-free. Based on these data, we propose that comprehensive research on harvested honey is needed to decide on the veterinary use of lithium.

9.
BMC Womens Health ; 21(1): 62, 2021 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-33573653

RESUMEN

BACKGROUND: Zinc and copper are essential trace elements and play a crucial role in the homeostasis of connective tissues. In this study, we aimed to define zinc and copper levels in the vaginal tissue and establish whether a correlation exists between the zinc and copper levels either or both in whole blood or vaginal tissue samples and whether the finding correlates with the age of the patient or at least with her menopausal status. METHODS: We collected whole blood and vaginal tissue samples from 32 women and measured their zinc and copper levels by inductively coupled plasma optical emission spectrometry. We have performed Student's t test to evaluate the differences in the mean levels of trace elements and multiple regression to evaluate the association between vaginal tissue zinc/copper levels and age, menopausal status, number of vaginal deliveries, and zinc/copper blood levels. RESULTS: Zinc levels were significantly higher in both the vaginal tissues and whole blood samples than copper levels (p < 0.01). In the vaginal tissue samples, a strong positive correlation could be detected between zinc and copper levels (r = 0.82, p < 0.01). In the vaginal tissue, a negative correlation was found for zinc and copper levels with the age of women (r = - 0.27, p = 0.04 and r = - 0.56, p < 0.01). Multiple linear regression model (age, menopausal status, vaginal delivery and copper/zinc blood levels) showed that only age remained a significant predictor for zinc and copper vaginal tissues levels (p = 0.03, 95% CI - 2.28 to - 0.06; p = 0.004, 95% CI - 1.76 to - 0.34). CONCLUSIONS: Zinc and copper levels in the vaginal tissue decline with age. Out of the examined variables (age, menopausal status, vaginal delivery, and copper/zinc levels), only age is a significant predictor of vaginal zinc/copper levels.


Asunto(s)
Cobre , Oligoelementos , Femenino , Humanos , Vagina , Zinc
10.
Environ Technol ; 42(24): 3725-3735, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32134365

RESUMEN

The fungus Aspergillus oryzae could be shown to be a viable alternative for biosorption of valuable metals from solution. Fungal biomass can be obtained easily in high quantities as a waste of biofermentation processes, and used in a complex, multi-phase solution mimicking naturally occurring, mining-affected water samples. With test solution formulated after natural conditions, formation of secondary Al and Fe phases co-precipitating Ce was recorded in addition to specific biosorption of rare earth elements. Remarkably, the latter were removed from the solution despite the presence of high concentrations of interfering Fe and Al. The biomass was viable even after prolonged incubation in the metal solution, and minimal inhibitory concentrations for single metals were higher than those in the test solution. While precipitation/biosorption of Ce (maximal biosorption efficiency was 58.0 ± 22.3% after 6 h of incubation) coincided with the gross removal of Fe from the metal solution, Y (81.5 ± 11.3% efficiency, 24 h incubation) and Nd (87.4 ± 9.1% efficiency, 24 h incubation) were sequestered later, similarly to Ni and Zn. The biphasic binding pattern specific to single metals could be connected to dynamically changing pH and NH4+ concentrations, which were attributed to the physiological changes taking place in starving A. oryzae biomass. The metals were found extracellularly in minerals associated with the cell wall, and intracellularly precipitated in the vacuoles. The latter process was explained with intracellular metal detoxification resulting in metal resistance.


Asunto(s)
Aspergillus oryzae , Metales Pesados , Adsorción , Biomasa , Concentración de Iones de Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA