Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(15): 16927-16948, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38645331

RESUMEN

Pharmacologically active salicylanilides (2-hydroxy-N-phenylbenzamides) have been a promising area of interest in medicinal chemistry-related research for quite some time. This group of compounds has shown a wide spectrum of biological activities, including but not limited to anticancer effects. In this study, substituted salicylanilides were chosen to evaluate the in vitro activity on U87 human glioblastoma (GBM) cells. The parent salicylanilide, salicylanilide 5-chloropyrazinoates, a 4-aminosalicylic acid derivative, and the new salicylanilide 4-formylbenzoates were chemically and in vitro characterized. To enhance the internalization of the compounds, they were conjugated to delivery peptides with the formation of oxime bonds. Oligotuftsins ([TKPKG]n, n = 1-4), the ligands of neuropilin receptors, were used as GBM-targeting carrier peptides. The in vitro cellular uptake, intracellular localization, and penetration ability on tissue-mimicking models of the fluorescent peptide derivatives were determined. The compounds and their peptide conjugates significantly decreased the viability of U87 glioma cells. Salicylanilide compound-induced GBM cell death was associated with activation of autophagy, as characterized by immunodetection of autophagy-related processing of light chain 3 protein.

2.
Eur J Pharm Biopharm ; 174: 111-130, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35378278

RESUMEN

Mycobacterium tuberculosis is an intracellular pathogen and the uptake of the antimycobacterial compounds by host cells is limited. Novel antimycobacterials effective against intracellular bacteria are needed. New N-substituted derivatives of 4-aminosalicylic acid have been designed and evaluated. To achieve intracellular efficacy and selectivity, these compounds were conjugated to tuftsin peptides via oxime or amide bonds. These delivery peptides can target tuftsin- and neuropilin receptor-bearing cells, such as macrophages and various other cells of lung origin. We have demonstrated that the in vitro antimycobacterial activity of the 4-aminosalicylic derivatives against M. tuberculosis H37Rv was preserved in the peptide conjugates. The free drugs were ineffective on infected cells, but the conjugates were active against the intracellular bacteria and have the selectivity on various types of host cells. The intracellular distribution of the carrier peptides was assessed, and the peptides internalize and display mainly in the cytosol in a concentration-dependent manner. The penetration ability of the most promising carrier peptide OT5 was evaluated using Transwell-inserts and spheroids. The pentapeptide exhibited time- and concentration-dependent penetration across the non-contact monolayers. Also, the pentapeptide has a fair penetration rate towards the center of spheroids formed of EBC-1 cells.


Asunto(s)
Ácido Aminosalicílico , Mycobacterium tuberculosis , Tuftsina , Ácido Aminosalicílico/farmacología , Antibacterianos/farmacología , Antituberculosos/química , Antituberculosos/farmacología , Excipientes/farmacología , Pruebas de Sensibilidad Microbiana , Péptidos/química , Tuftsina/química , Tuftsina/farmacología
3.
Amino Acids ; 53(7): 1033-1049, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34032919

RESUMEN

Cell-penetrating peptides (CPPs) are promising delivery vehicles. These short peptides can transport wide range of cargos into cells, although their usage has often limitations. One of them is the endosomatic internalisation and thus the vesicular entrapment. Modifications which increases the direct delivery into the cytosol is highly researched area. Among the oligoarginines the longer ones (n > 6) show efficient internalisation and they are well-known members of CPPs. Herein, we describe the modification of tetra- and hexaarginine with (4-((4-(dimethylamino)phenyl)azo)benzoyl) (Dabcyl) group. This chromophore, which is often used in FRET system increased the internalisation of both peptides, and its effect was more outstanding in case of hexaarginine. The modified hexaarginine may enter into cells more effectively than octaarginine, and showed diffuse distribution besides vesicular transport already at low concentration. The attachment of Dabcyl group not only increases the cellular uptake of the cell-penetrating peptides but it may affect the mechanism of their internalisation. Their conjugates with antitumor drugs were studied on different cells and showed antitumor activity.


Asunto(s)
Antineoplásicos/farmacología , Cationes/química , Péptidos de Penetración Celular/farmacología , Neoplasias/patología , Oligopéptidos/química , Péptidos/química , p-Dimetilaminoazobenceno/análogos & derivados , Antineoplásicos/química , Proliferación Celular , Péptidos de Penetración Celular/química , Humanos , Neoplasias/tratamiento farmacológico , Células Tumorales Cultivadas , p-Dimetilaminoazobenceno/química
4.
J Med Chem ; 64(6): 2982-3005, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33719423

RESUMEN

Most therapeutic agents used for treating brain malignancies face hindered transport through the blood-brain barrier (BBB) and poor tissue penetration. To overcome these problems, we developed peptide conjugates of conventional and experimental anticancer agents. SynB3 cell-penetrating peptide derivatives were applied that can cross the BBB. Tuftsin derivatives were used to target the neuropilin-1 transport system for selectivity and better tumor penetration. Moreover, SynB3-tuftsin tandem compounds were synthesized to combine the beneficial properties of these peptides. Most of the conjugates showed high and selective efficacy against glioblastoma cells. SynB3 and tandem derivatives demonstrated superior cellular internalization. The penetration profile of the conjugates was determined on a lipid monolayer and Transwell co-culture system with noncontact HUVEC-U87 monolayers as simple ex vivo and in vitro BBB models. Importantly, in 3D spheroids, daunomycin-peptide conjugates possessed a better tumor penetration ability than daunomycin. These conjugates are promising tools for the delivery systems with tunable features.


Asunto(s)
Antineoplásicos/farmacocinética , Barrera Hematoencefálica/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Péptidos de Penetración Celular/farmacocinética , Glioblastoma/tratamiento farmacológico , Oligopéptidos/farmacocinética , Tuftsina/farmacocinética , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Péptidos de Penetración Celular/química , Péptidos de Penetración Celular/farmacología , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacología , Sistemas de Liberación de Medicamentos , Glioblastoma/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Neuropilina-1/metabolismo , Oligopéptidos/química , Oligopéptidos/farmacología , Ratas , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/metabolismo , Tuftsina/análogos & derivados , Tuftsina/farmacología , Células Tumorales Cultivadas
6.
Molecules ; 25(10)2020 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-32408517

RESUMEN

Based on the isosterism concept, we have designed and synthesized homologous N-alkyl-2-[4-(trifluoromethyl)benzoyl]hydrazine-1-carboxamides (from C1 to C18) as potential antimicrobial agents and enzyme inhibitors. They were obtained from 4-(trifluoromethyl)benzohydrazide by three synthetic approaches and characterized by spectral methods. The derivatives were screened for their inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) via Ellman's method. All the hydrazinecarboxamides revealed a moderate inhibition of both AChE and BuChE, with IC50 values of 27.04-106.75 µM and 58.01-277.48 µM, respectively. Some compounds exhibited lower IC50 for AChE than the clinically used drug rivastigmine. N-Tridecyl/pentadecyl-2-[4-(trifluoromethyl)benzoyl]hydrazine-1-carboxamides were identified as the most potent and selective inhibitors of AChE. For inhibition of BuChE, alkyl chain lengths from C5 to C7 are optimal substituents. Based on molecular docking study, the compounds may work as non-covalent inhibitors that are placed in a close proximity to the active site triad. The compounds were evaluated against Mycobacterium tuberculosis H37Rv and nontuberculous mycobacteria (M. avium, M. kansasii). Reflecting these results, we prepared additional analogues of the most active carboxamide (n-hexyl derivative 2f). N-Hexyl-5-[4-(trifluoromethyl)phenyl]-1,3,4-oxadiazol-2-amine (4) exhibited the lowest minimum inhibitory concentrations within this study (MIC ≥ 62.5 µM), however, this activity is mild. All the compounds avoided cytostatic properties on two eukaryotic cell lines (HepG2, MonoMac6).


Asunto(s)
Acetilcolinesterasa/metabolismo , Antiinfecciosos , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa , Imidazoles , Mycobacterium avium/crecimiento & desarrollo , Mycobacterium kansasii/crecimiento & desarrollo , Mycobacterium tuberculosis/crecimiento & desarrollo , Antiinfecciosos/síntesis química , Antiinfecciosos/química , Antiinfecciosos/farmacología , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Proteínas Ligadas a GPI/metabolismo , Células Hep G2 , Humanos , Imidazoles/síntesis química , Imidazoles/química , Imidazoles/farmacología
7.
Eur J Med Chem ; 181: 111578, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31401536

RESUMEN

The research of novel antimycobacterial drugs represents a cutting-edge topic. Thirty phenolic N-monosubstituted carbamates, derivatives of salicylanilides and 4-chlorophenol, were investigated against Mycobacterium tuberculosis H37Ra, H37Rv including multidrug- and extensively drug-resistant strains, Mycobacterium avium, Mycobacterium kansasii, Mycobacterium aurum and Mycobacterium smegmatis as representatives of nontuberculous mycobacteria (NTM) and for their cytotoxic and cytostatic properties in HepG2 cells. Since salicylanilides are multi-targeting compounds, we determined also inhibition of mycobacterial isocitrate lyase, an enzyme involved in the maintenance of persistent tuberculous infection. The minimum inhibitory concentrations were from ≤0.5 µM for both drug-susceptible and resistant M. tuberculosis and from ≤0.79 µM for NTM with no cross-resistance to established drugs. The presence of halogenated salicylanilide scaffold results into an improved activity. We have verified that isocitrate lyase is not a key target, presented carbamates showed only moderate inhibitory activity (up to 18% at a concentration of 10 µM). Most of the compounds showed no cytotoxicity for HepG2 cells and some of them were without cytostatic activity. Cytotoxicity-based selectivity indexes of several carbamates for M. tuberculosis, including resistant strains, were higher than 125, thus favouring some derivatives as promising features for future development.


Asunto(s)
Antituberculosos/química , Antituberculosos/farmacología , Carbamatos/química , Carbamatos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Antituberculosos/síntesis química , Carbamatos/síntesis química , Células Hep G2 , Humanos , Isocitratoliasa/antagonistas & inhibidores , Isocitratoliasa/metabolismo , Mycobacterium tuberculosis/enzimología , Fenoles/síntesis química , Fenoles/química , Fenoles/farmacología , Salicilanilidas/síntesis química , Salicilanilidas/química , Salicilanilidas/farmacología , Tuberculosis/tratamiento farmacológico
8.
Bioorg Med Chem Lett ; 27(23): 5185-5189, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29097168

RESUMEN

Reflecting the known biological activity of isoniazid-based hydrazones, seventeen hydrazones of 4-(trifluoromethyl)benzohydrazide as their bioisosters were synthesized from various benzaldehydes and aliphatic ketones. The compounds were screened for their in vitro activity against Mycobacterium tuberculosis, nontuberculous mycobacteria (M. avium, M. kansasii), bacterial and fungal strains. The most antimicrobial potent derivatives were also investigated for their cytostatic and cytotoxic properties against three cell lines. Camphor-based molecule, 4-(trifluoromethyl)-N'-(1,7,7-trimethylbicyclo[2.2.1]heptan-2-ylidene)benzohydrazide, exhibited the highest and selective inhibition of M. tuberculosis with the minimum inhibitory concentration (MIC) of 4 µM, while N'-(4-chlorobenzylidene)-4-(trifluoromethyl)benzohydrazide was found to be superior against M. kansasii (MIC = 16 µM). N'-(5-Chloro-2-hydroxybenzylidene)-4-(trifluoromethyl)benzohydrazide showed the lowest MIC values for gram-positive bacteria including methicillin-resistant Staphylococcus aureus as well as against two fungal strains of Candida glabrata and Trichophyton mentagrophytes within the range of ≤0.49-3.9 µM. The convenient substitution of benzylidene moiety at the position 4 or the presence of 5-chloro-2-hydroxybenzylidene scaffold concomitantly with a sufficient lipophilicity are essential for the noticeable antimicrobial activity. This 5-chlorosalicylidene derivative avoided any cytotoxicity on two mammalian cell cultures (HepG2, BMMΦ) up to the concentration of 100 µM, but it affected the growth of MonoMac6 cells.


Asunto(s)
Antiinfecciosos/síntesis química , Hidrazonas/química , Animales , Antiinfecciosos/farmacología , Antiinfecciosos/toxicidad , Candida glabrata/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Células Hep G2 , Humanos , Hidrazonas/farmacología , Hidrazonas/toxicidad , Ratones , Pruebas de Sensibilidad Microbiana , Complejo Mycobacterium avium/efectos de los fármacos , Mycobacterium kansasii/efectos de los fármacos , Mycobacterium tuberculosis/efectos de los fármacos
9.
Eur J Med Chem ; 133: 152-173, 2017 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-28384546

RESUMEN

Tuberculosis is caused by Mycobacterium tuberculosis, an intracellular pathogen that can survive in host cells, mainly in macrophages. An increase of multidrug-resistant tuberculosis qualifies this infectious disease as a major public health problem worldwide. The cellular uptake of the antimycobacterial agents by infected host cells is limited. Our approach is to enhance the cellular uptake of the antituberculars by target cell-directed delivery using drug-peptide conjugates to achieve an increased intracellular efficacy. In this study, salicylanilide derivatives (2-hydroxy-N-phenylbenzamides) with remarkable antimycobacterial activity were conjugated to macrophage receptor specific tuftsin based peptide carriers through oxime bond directly or by insertion of a GFLG tetrapeptide spacer. We have found that the in vitro antimycobacterial activity of the salicylanilides against M. tuberculosis H37Rv is preserved in the conjugates. While the free drug was ineffective on infected macrophage model, the conjugates were active against the intracellular bacteria. The fluorescently labelled peptide carriers that were modified with different fatty acid side chains showed outstanding cellular uptake rate to the macrophage model cells. The conjugation of the salicylanilides to tuftsin based carriers reduced or abolished the in vitro cytostatic activity of the free drugs with the exception of the palmitoylated conjugates. The conjugates degraded in the presence of rat liver lysosomal homogenate leading to the formation of an oxime bond-linked salicylanilide-amino acid fragment as the smallest active metabolite.


Asunto(s)
Antituberculosos/química , Antituberculosos/farmacología , Mycobacterium/efectos de los fármacos , Salicilanilidas/química , Salicilanilidas/farmacología , Tuftsina/análogos & derivados , Tuftsina/farmacología , Animales , Antituberculosos/farmacocinética , Línea Celular , Humanos , Infecciones por Mycobacterium/tratamiento farmacológico , Mycobacterium tuberculosis/efectos de los fármacos , Ratas , Salicilanilidas/farmacocinética , Tuberculosis/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuftsina/farmacocinética
10.
Eur J Med Chem ; 101: 692-704, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26210507

RESUMEN

In the Mycobacterium genus over one hundred species are already described and new ones are periodically reported. Species that form colonies in a week are classified as rapid growers, those requiring longer periods (up to three months) are the mostly pathogenic slow growers. More recently, new emerging species have been identified to lengthen the list, all rapid growers. Of these, Mycobacterium abscessus is also an intracellular pathogen and it is the most chemotherapy-resistant rapid-growing mycobacterium. In addition, the cases of multidrug-resistant Mycobacterium tuberculosis infection are also increasing. Therefore there is an urgent need to find new active molecules against these threatening strains. Based on previous results, a series of salicylanilides, salicylanilide 5-chloropyrazinoates and carbamates was designed, synthesized and characterised. The compounds were evaluated for their in vitro activity on M. abscessus, susceptible M. tuberculosis H37Rv, multidrug-resistant (MDR) M. tuberculosis MDR A8, M. tuberculosis MDR 9449/2006 and on the extremely-resistant Praha 131 (XDR) strains. All derivatives exhibited a significant activity with minimum inhibitory concentrations (MICs) in the low micromolar range. Eight salicylanilide carbamates and two salicylanilide esters exhibited an excellent in vitro activity on M. abscessus with MICs from 0.2 to 2.1 µM, thus being more effective than ciprofloxacin and gentamicin. This finding is potentially promising, particularly, as M. abscessus is a threateningly chemotherapy-resistant species. M. tuberculosis H37Rv was inhibited with MICs from 0.2 µM, and eleven compounds have lower MICs than isoniazid. Salicylanilide esters and carbamates were found that they were effective also on MDR and XDR M. tuberculosis strains with MICs ≥1.0 µM. The in vitro cytotoxicity (IC50) was also determined on human MonoMac-6 cells, and selectivity index (SI) of the compounds was established. In general, salicylanilide derivatives substituted by halogens on both salicyl and aniline rings showed better activity, than 4-benzoylaniline derivatives. The ester or carbamate bond formation of parent salicylanilides mostly retained or improved antimycobacterial potency with moderate selectivity.


Asunto(s)
Antibacterianos/farmacología , Carbamatos/farmacología , Ésteres/farmacología , Mycobacterium/efectos de los fármacos , Salicilanilidas/farmacología , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Antibacterianos/síntesis química , Antibacterianos/química , Carbamatos/síntesis química , Carbamatos/química , Línea Celular , Relación Dosis-Respuesta a Droga , Ésteres/síntesis química , Ésteres/química , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Mycobacterium/clasificación , Salicilanilidas/síntesis química , Salicilanilidas/química , Relación Estructura-Actividad
11.
Bioorg Med Chem ; 23(4): 868-75, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25593095

RESUMEN

Based on the previously described antimicrobial activity of salicylanilide derivatives, we designed and synthesized novel 2-(phenylcarbamoyl)phenyl 4-substituted benzoates. The most active salicylanilides were selected for esterification by various 4-substituted benzoic acids. These compounds were evaluated in vitro against Mycobacterium tuberculosis, including multidrug-resistant strains, nontuberculous mycobacteria (Mycobacterium avium and Mycobacterium kansasii), and eight bacterial and fungal strains. We also investigated the cytostatic and cytotoxic actions of the esters. The minimum inhibitory concentrations (MICs) against mycobacteria ranged from 0.125 to 8µM. Interestingly, the drug-resistant strains exhibited the highest susceptibility without any cross-resistance with established drugs. 4-Bromo-2-[4-(trifluoromethyl)phenylcarbamoyl]phenyl 4-nitrobenzoate showed the most potent inhibition with MIC values ranging from 0.25 to 2µM. Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus, were inhibited by two derivatives with MIC values of at least 0.49µM, whereas Gram-negative bacteria and most of the tested fungi did not display any marked susceptibility. Benzoates exhibited no cytotoxicity at concentrations up to 50µM but most caused significant cytostasis with IC50 values lower than 10µM. Some cytotoxicity-based selectivity indexes for drug-susceptible and drug-resistant M. tuberculosis as well as Staphylococci were higher than 100. These values indicate that some of these derivatives are promising candidates for future research.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Antifúngicos/química , Antifúngicos/farmacología , Benzoatos/química , Benzoatos/farmacología , Antibacterianos/síntesis química , Antifúngicos/síntesis química , Bacterias/efectos de los fármacos , Infecciones Bacterianas/tratamiento farmacológico , Benzoatos/síntesis química , Hongos/efectos de los fármacos , Humanos , Mycobacterium/efectos de los fármacos , Infecciones por Mycobacterium/tratamiento farmacológico , Mycobacterium tuberculosis/efectos de los fármacos , Micosis/tratamiento farmacológico , Tuberculosis/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico
12.
Bioconjug Chem ; 22(7): 1320-9, 2011 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-21668011

RESUMEN

Here, we report on the synthesis, enzymatic stability, and antitumor activity of novel bioconjugates containing the chemotherapeutic agent daunorubicin attached through an oxime bond to various gonadotropin-releasing hormone-III (GnRH-III) derivatives. In order to increase the enzymatic stability of the bioconjugates (in particular against chymotrypsin), (4)Ser was replaced by N-Me-Ser or Lys(Ac). A compound in which (4)Lys was not acetylated was also prepared, with the aim of investigating the influence of the free ε-amino group on the biochemical properties. The in vitro cytostatic effect of the bioconjugates was determined on MCF-7 human breast, HT-29 human colon, and LNCaP human prostate cancer cells by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Their stability/degradation (1) in human serum, (2) in the presence of rat liver lysosomal homogenate, and (3) in the presence of digestive enzymes (trypsin, chymotrypsin, and pepsin) was analyzed by liquid chromatography in combination with mass spectrometry. The results showed that (1) all synthesized bioconjugates had in vitro cytostatic effect, (2) they were stable in human serum at least for 24 h, and (3) they were hydrolyzed in the presence of lysosomal homogenate. All compounds were stable in the presence of (1) pepsin and (2) trypsin (except for the (4)Lys containing bioconjugate). In the presence of chymotrypsin, all bioconjugates were digested; the degradation rate strongly depending on their structure. The bioconjugates in which (4)Ser was replaced by N-Me-Ser or Lys(Ac) had the highest enzymatic stability, making them potential candidates for oral administration. In vivo tumor growth inhibitory effect of two selected bioconjugates was evaluated on orthotopically developed C26 murine colon carcinoma bearing mice. The results indicated that the compound containing Lys(Ac) in position 4 had significantly higher antitumor activity than the parent bioconjugate.


Asunto(s)
Antibióticos Antineoplásicos/metabolismo , Antibióticos Antineoplásicos/uso terapéutico , Daunorrubicina/metabolismo , Daunorrubicina/uso terapéutico , Hormona Liberadora de Gonadotropina/metabolismo , Hormona Liberadora de Gonadotropina/uso terapéutico , Neoplasias/tratamiento farmacológico , Ácido Pirrolidona Carboxílico/análogos & derivados , Secuencia de Aminoácidos , Animales , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacología , Línea Celular Tumoral , Daunorrubicina/química , Daunorrubicina/farmacología , Estabilidad de Medicamentos , Femenino , Hormona Liberadora de Gonadotropina/química , Hormona Liberadora de Gonadotropina/farmacología , Humanos , Lisosomas/metabolismo , Ratones , Ratones Endogámicos BALB C , Estructura Secundaria de Proteína , Ácido Pirrolidona Carboxílico/química , Ácido Pirrolidona Carboxílico/metabolismo , Ácido Pirrolidona Carboxílico/farmacología , Ácido Pirrolidona Carboxílico/uso terapéutico , Ratas , Suero/metabolismo
13.
Inorg Chem ; 48(4): 1763-73, 2009 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-19159267

RESUMEN

The kinetics of the redox reactions of the peroxomonosulfate ion (HSO(5)(-)) with iron(II), vanadium(IV), cerium(III), chloride, bromide, and iodide ions were studied. Cerium(III) is only oxidized upon illumination by UV light and cerium(IV) is produced in a photoreaction with a quantum yield of 0.33 +/- 0.03. Iron(II) and vanadium(IV) are most probably oxidized through one-electron transfer producing sulfate ion radicals as intermediates. The halide ions are oxidized in a formally two-electron process, which most likely includes oxygen-atom transfer. Comparison with literature data suggests that the activation entropies might be used as indicators distinguishing between heterolytic and homolytic cleavage of the peroxo bond in the redox reactions of HSO(5)(-).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA