Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Res Commun ; 4(3): 691-705, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38385626

RESUMEN

Therapeutic resistance and recurrence remain core challenges in cancer therapy. How therapy resistance arises is currently not fully understood with tumors surviving via multiple alternative routes. Here, we demonstrate that a subset of cancer cells survives therapeutic stress by entering a transient state characterized by whole-genome doubling. At the onset of the polyploidization program, we identified an upregulation of key transcriptional regulators, including the early stress-response protein AP-1 and normoxic stabilization of HIF2α. We found altered chromatin accessibility, ablated expression of retinoblastoma protein (RB1), and enrichment of AP-1 motif accessibility. We demonstrate that AP-1 and HIF2α regulate a therapy resilient and survivor phenotype in cancer cells. Consistent with this, genetic or pharmacologic targeting of AP-1 and HIF2α reduced the number of surviving cells following chemotherapy treatment. The role of AP-1 and HIF2α in stress response by polyploidy suggests a novel avenue for tackling chemotherapy-induced resistance in cancer. SIGNIFICANCE: In response to cisplatin treatment, some surviving cancer cells undergo whole-genome duplications without mitosis, which represents a mechanism of drug resistance. This study presents mechanistic data to implicate AP-1 and HIF2α signaling in the formation of this surviving cell phenotype. The results open a new avenue for targeting drug-resistant cells.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Neoplasias , Humanos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factor de Transcripción AP-1/genética , Regulación hacia Arriba , Transducción de Señal , Neoplasias/tratamiento farmacológico
2.
Med Oncol ; 39(11): 160, 2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-35972622

RESUMEN

The rise of animals represents a major but enigmatic event in the evolutionary history of life. In recent years, numerous studies have aimed at understanding the genetic basis of this transition. However, genome comparisons of diverse animal and protist lineages suggest that the appearance of gene families that were previously considered animal specific indeed preceded animals. Animals' unicellular relatives, such as choanoflagellates, ichthyosporeans, and filastereans, demonstrate complex life cycles including transient multicellularity as well as genetic toolkits for temporal cell differentiation, cell-to-cell communication, apoptosis, and cell adhesion. This has warranted further exploration of the genetic basis underlying transitions in cellular organization. An alternative model for the study of transitions in cellular organization is tumors, which exploit physiological programs that characterize both unicellularity and multicellularity. Tumor cells, for example, switch adhesion on and off, up- or downregulate specific cell differentiation states, downregulate apoptosis, and allow cell migration within tissues. Here, we use insights from both the fields of phylogenomics and tumor biology to review the evolutionary history of the regulatory systems of multicellularity and discuss their overlap. We claim that while evolutionary biology has contributed to an increased understanding of cancer, broad investigations into tissue-normal and transformed-can also contribute the framework for exploring animal evolution.


Asunto(s)
Evolución Biológica , Neoplasias , Animales , Comunicación Celular , Diferenciación Celular/genética , Eucariontes/genética , Neoplasias/genética , Filogenia
3.
PLoS Comput Biol ; 18(5): e1009839, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35559958

RESUMEN

Myeloid-derived monocyte and macrophages are key cells in the bone that contribute to remodeling and injury repair. However, their temporal polarization status and control of bone-resorbing osteoclasts and bone-forming osteoblasts responses is largely unknown. In this study, we focused on two aspects of monocyte/macrophage dynamics and polarization states over time: 1) the injury-triggered pro- and anti-inflammatory monocytes/macrophages temporal profiles, 2) the contributions of pro- versus anti-inflammatory monocytes/macrophages in coordinating healing response. Bone healing is a complex multicellular dynamic process. While traditional in vitro and in vivo experimentation may capture the behavior of select populations with high resolution, they cannot simultaneously track the behavior of multiple populations. To address this, we have used an integrated coupled ordinary differential equations (ODEs)-based framework describing multiple cellular species to in vivo bone injury data in order to identify and test various hypotheses regarding bone cell populations dynamics. Our approach allowed us to infer several biological insights including, but not limited to,: 1) anti-inflammatory macrophages are key for early osteoclast inhibition and pro-inflammatory macrophage suppression, 2) pro-inflammatory macrophages are involved in osteoclast bone resorptive activity, whereas osteoblasts promote osteoclast differentiation, 3) Pro-inflammatory monocytes/macrophages rise during two expansion waves, which can be explained by the anti-inflammatory macrophages-mediated inhibition phase between the two waves. In addition, we further tested the robustness of the mathematical model by comparing simulation results to an independent experimental dataset. Taken together, this novel comprehensive mathematical framework allowed us to identify biological mechanisms that best recapitulate bone injury data and that explain the coupled cellular population dynamics involved in the process. Furthermore, our hypothesis testing methodology could be used in other contexts to decipher mechanisms in complex multicellular processes.


Asunto(s)
Macrófagos , Osteoclastos , Antiinflamatorios , Diferenciación Celular , Monocitos , Osteoblastos , Osteoclastos/fisiología
4.
Sci Rep ; 11(1): 6055, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33723343

RESUMEN

Bone-forming osteoblasts and -resorbing osteoclasts control bone injury repair, and myeloid-derived cells such as monocytes and macrophages are known to influence their behavior. However, precisely how these multiple cell types coordinate and regulate each other over time within the bone marrow to restore bone is difficult to dissect using biological approaches. Conversely, mathematical modeling lends itself well to this challenge. Therefore, we generated an ordinary differential equation (ODE) model powered by experimental data (osteoblast, osteoclast, bone volume, pro- and anti-inflammatory myeloid cells) obtained from intra-tibially injured mice. Initial ODE results using only osteoblast/osteoclast populations demonstrated that bone homeostasis could not be recovered after injury, but this issue was resolved upon integration of pro- and anti-inflammatory myeloid population dynamics. Surprisingly, the ODE revealed temporal disconnects between the peak of total bone mineralization/resorption, and osteoblast/osteoclast numbers. Specifically, the model indicated that osteoclast activity must vary greatly (> 17-fold) to return the bone volume to baseline after injury and suggest that osteoblast/osteoclast number alone is insufficient to predict bone the trajectory of bone repair. Importantly, the values of osteoclast activity fall within those published previously. These data underscore the value of mathematical modeling approaches to understand and reveal new insights into complex biological processes.


Asunto(s)
Regeneración Ósea , Simulación por Computador , Modelos Biológicos , Osteoclastos/metabolismo , Tibia , Animales , Masculino , Ratones , Tibia/lesiones , Tibia/metabolismo
5.
Nat Ecol Evol ; 5(3): 379-391, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33462489

RESUMEN

The initiation and progression of cancers reflect the underlying process of somatic evolution, in which the diversification of heritable phenotypes provides a substrate for natural selection, resulting in the outgrowth of the most fit subpopulations. Although somatic evolution can tap into multiple sources of diversification, it is assumed to lack access to (para)sexual recombination-a key diversification mechanism throughout all strata of life. On the basis of observations of spontaneous fusions involving cancer cells, the reported genetic instability of polypoid cells and the precedence of fusion-mediated parasexual recombination in fungi, we asked whether cell fusions between genetically distinct cancer cells could produce parasexual recombination. Using differentially labelled tumour cells, we found evidence of low-frequency, spontaneous cell fusions between carcinoma cells in multiple cell line models of breast cancer both in vitro and in vivo. While some hybrids remained polyploid, many displayed partial ploidy reduction, generating diverse progeny with heterogeneous inheritance of parental alleles, indicative of partial recombination. Hybrid cells also displayed elevated levels of phenotypic plasticity, which may further amplify the impact of cell fusions on the diversification of phenotypic traits. Using mathematical modelling, we demonstrated that the observed rates of spontaneous somatic cell fusions may enable populations of tumour cells to amplify clonal heterogeneity, thus facilitating the exploration of larger areas of the adaptive landscape (relative to strictly asexual populations), which may substantially accelerate a tumour's ability to adapt to new selective pressures.


Asunto(s)
Evolución Clonal , Neoplasias , Fusión Celular , Diploidia , Humanos , Recombinación Genética
6.
PLoS Comput Biol ; 16(3): e1007635, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32155140

RESUMEN

The Hybrid Automata Library (HAL) is a Java Library developed for use in mathematical oncology modeling. It is made of simple, efficient, generic components that can be used to model complex spatial systems. HAL's components can broadly be classified into: on- and off-lattice agent containers, finite difference diffusion fields, a GUI building system, and additional tools and utilities for computation and data collection. These components are designed to operate independently and are standardized to make them easy to interface with one another. As a demonstration of how modeling can be simplified using our approach, we have included a complete example of a hybrid model (a spatial model with interacting agent-based and PDE components). HAL is a useful asset for researchers who wish to build performant 1D, 2D and 3D hybrid models in Java, while not starting entirely from scratch. It is available on GitHub at https://github.com/MathOnco/HAL under the MIT License. HAL requires the Java JDK version 1.8 or later to compile and run the source code.


Asunto(s)
Biología Computacional/métodos , Algoritmos , Computadores , Biblioteca de Genes , Modelos Biológicos , Modelos Teóricos , Programas Informáticos , Interfaz Usuario-Computador
7.
Math Med Biol ; 36(1): 93-112, 2019 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29452382

RESUMEN

Intra-tumour phenotypic heterogeneity limits accuracy of clinical diagnostics and hampers the efficiency of anti-cancer therapies. Dealing with this cellular heterogeneity requires adequate understanding of its sources, which is extremely difficult, as phenotypes of tumour cells integrate hardwired (epi)mutational differences with the dynamic responses to microenvironmental cues. The later comes in form of both direct physical interactions, as well as inputs from gradients of secreted signalling molecules. Furthermore, tumour cells can not only receive microenvironmental cues, but also produce them. Despite high biological and clinical importance of understanding spatial aspects of paracrine signaling, adequate research tools are largely lacking. Here, a partial differential equation (PDE)-based mathematical model is developed that mimics the process of cell ablation. This model suggests how each cell might contribute to the microenvironment by either absorbing or secreting diffusible factors, and quantifies the extent to which observed intensities can be explained via diffusion-mediated signalling. The model allows for the separation of phenotypic responses to signalling gradients within tumour microenvironments from the combined influence of responses mediated by direct physical contact and hardwired (epi)genetic differences. The method is applied to a multi-channel immunofluorescence in situ hybridisation (iFISH)-stained breast cancer histological specimen, and correlations are investigated between: HER2 gene amplification, HER2 protein expression and cell interaction with the diffusible microenvironment. This approach allows partial deconvolution of the complex inputs that shape phenotypic heterogeneity of tumour cells and identifies cells that significantly impact gradients of signalling molecules.


Asunto(s)
Modelos Biológicos , Comunicación Paracrina/fisiología , Microambiente Tumoral/fisiología , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/fisiopatología , Línea Celular Tumoral , Simulación por Computador , Femenino , Amplificación de Genes , Técnicas Histológicas , Humanos , Hibridación Fluorescente in Situ , Conceptos Matemáticos , Mutación , Comunicación Paracrina/genética , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Transducción de Señal/fisiología , Microambiente Tumoral/genética
8.
PLoS Comput Biol ; 11(11): e1004626, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26599078

RESUMEN

The biology of the metastatic colonization process remains a poorly understood phenomenon. To improve our knowledge of its dynamics, we conducted a modelling study based on multi-modal data from an orthotopic murine experimental system of metastatic renal cell carcinoma. The standard theory of metastatic colonization usually assumes that secondary tumours, once established at a distant site, grow independently from each other and from the primary tumour. Using a mathematical model that translates this assumption into equations, we challenged this theory against our data that included: 1) dynamics of primary tumour cells in the kidney and metastatic cells in the lungs, retrieved by green fluorescent protein tracking, and 2) magnetic resonance images (MRI) informing on the number and size of macroscopic lesions. Critically, when calibrated on the growth of the primary tumour and total metastatic burden, the predicted theoretical size distributions were not in agreement with the MRI observations. Moreover, tumour expansion only based on proliferation was not able to explain the volume increase of the metastatic lesions. These findings strongly suggested rejection of the standard theory, demonstrating that the time development of the size distribution of metastases could not be explained by independent growth of metastatic foci. This led us to investigate the effect of spatial interactions between merging metastatic tumours on the dynamics of the global metastatic burden. We derived a mathematical model of spatial tumour growth, confronted it with experimental data of single metastatic tumour growth, and used it to provide insights on the dynamics of multiple tumours growing in close vicinity. Together, our results have implications for theories of the metastatic process and suggest that global dynamics of metastasis development is dependent on spatial interactions between metastatic lesions.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Modelos Biológicos , Metástasis de la Neoplasia , Animales , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/fisiopatología , Biología Computacional , Simulación por Computador , Femenino , Neoplasias Renales/patología , Neoplasias Renales/fisiopatología , Ratones , Metástasis de la Neoplasia/patología , Metástasis de la Neoplasia/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...