Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Food Chem X ; 22: 101440, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38756467

RESUMEN

This study investigated the effect of polyols erythritol, d-mannitol, and maltitol on the volatility of aroma compounds γ-butyrolactone, 3-methyl-1-butanol, and 2-phenylethanol in aqueous solution. Headspace solid-phase microextraction/gas chromatography and diffusion-ordered nuclear magnetic resonance techniques were used to obtain information on aroma-food matrix interaction. Results demonstrated that adding polyols at final low concentrations of 5% or 10% (w/w) to an aqueous solution of 2-phenylethanol reduced the release of vapor-phase aromas, except in the case of 3-methyl-1-butanol, which was not affected by the presence of polyols in the liquid matrix. Polyols also reduced the diffusion coefficients of all three aroma compounds, probably due to friction between the molecules. At low polyol concentrations, aroma compound volatility and diffusion coefficient values were altered compared to those of aromas released from pure water. This observation is related to the physicochemical properties of the aroma compounds. These insights may help guide the use of the combination of aroma compounds and polyols in the formulation of sugar-free and reduced-sugar beverages. Chemical compounds: γ-butyrolactone (PubChem CID: 7302), 3-methyl-1-butanol (PubChem CID: 31260), 2-phenylethanol (PubChem CID: 6054), erythritol (PubChem CID: 222285), d-mannitol (PubChem CID: 6251), maltitol (PubChem CID: 493591).

3.
Epilepsia ; 65(5): 1346-1359, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38420750

RESUMEN

OBJECTIVE: This study was undertaken to develop a standardized grading system based on expert consensus for evaluating the level of confidence in the localization of the epileptogenic zone (EZ) as reported in published studies, to harmonize and facilitate systematic reviews in the field of epilepsy surgery. METHODS: We conducted a Delphi study involving 22 experts from 18 countries, who were asked to rate their level of confidence in the localization of the EZ for various theoretical clinical scenarios, using different scales. Information provided in these scenarios included one or several of the following data: magnetic resonance imaging (MRI) findings, invasive electroencephalography summary, and postoperative seizure outcome. RESULTS: The first explorative phase showed an overall interrater agreement of .347, pointing to large heterogeneity among experts' assessments, with only 17% of the 42 proposed scenarios associated with a substantial level of agreement. A majority showed preferences for the simpler scale and single-item scenarios. The successive Delphi voting phases resulted in a majority consensus across experts, with more than two thirds of respondents agreeing on the rating of each of the tested single-item scenarios. High or very high levels of confidence were ascribed to patients with either an Engel class I or class IA postoperative seizure outcome, a well-delineated EZ according to all available invasive EEG (iEEG) data, or a well-delineated focal epileptogenic lesion on MRI. MRI signs of hippocampal sclerosis or atrophy were associated with a moderate level of confidence, whereas a low level was ascribed to other MRI findings, a poorly delineated EZ according to iEEG data, or an Engel class II-IV postoperative seizure outcome. SIGNIFICANCE: The proposed grading system, based on an expert consensus, provides a simple framework to rate the level of confidence in the EZ reported in published studies in a structured and harmonized way, offering an opportunity to facilitate and increase the quality of systematic reviews and guidelines in the field of epilepsy surgery.


Asunto(s)
Consenso , Técnica Delphi , Electroencefalografía , Epilepsia , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/normas , Epilepsia/cirugía , Epilepsia/diagnóstico por imagen , Epilepsia/diagnóstico
4.
Transl Psychiatry ; 14(1): 35, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238304

RESUMEN

Protocadherin-19 (PCDH19) developmental and epileptic encephalopathy causes an early-onset epilepsy syndrome with limbic seizures, typically occurring in clusters and variably associated with intellectual disability and a range of psychiatric disorders including hyperactive, obsessive-compulsive and autistic features. Previous quantitative neuroimaging studies revealed abnormal cortical areas in the limbic formation (parahippocampal and fusiform gyri) and underlying white-matter fibers. In this study, we adopted morphometric, network-based and multivariate statistical methods to examine the cortex and substructure of the hippocampus and amygdala in a cohort of 20 PCDH19-mutated patients and evaluated the relation between structural patterns and clinical variables at individual level. We also correlated morphometric alterations with known patterns of PCDH19 expression levels. We found patients to exhibit high-significant reductions of cortical surface area at a whole-brain level (left/right pvalue = 0.045/0.084), and particularly in the regions of the limbic network (left/right parahippocampal gyri pvalue = 0.230/0.016; left/right entorhinal gyri pvalue = 0.002/0.327), and bilateral atrophy of several subunits of the amygdala and hippocampus, particularly in the CA regions (head of the left CA3 pvalue = 0.002; body of the right CA3 pvalue = 0.004), and differences in the shape of hippocampal structures. More severe psychiatric comorbidities correlated with more significant altered patterns, with the entorhinal gyrus (pvalue = 0.013) and body of hippocampus (pvalue = 0.048) being more severely affected. Morphometric alterations correlated significantly with the known expression patterns of PCDH19 (rvalue = -0.26, pspin = 0.092). PCDH19 encephalopathy represents a model of genetically determined neural network based neuropsychiatric disease in which quantitative MRI-based findings correlate with the severity of clinical manifestations and had have a potential predictive value if analyzed early.


Asunto(s)
Encefalopatías , Trastornos Mentales , Humanos , Convulsiones , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Trastornos Mentales/genética , Expresión Génica , Cadherinas/genética , Protocadherinas
5.
Neurology ; 102(4): e208007, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38290094

RESUMEN

BACKGROUND AND OBJECTIVE: Patients with presumed nonlesional focal epilepsy-based on either MRI or histopathologic findings-have a lower success rate of epilepsy surgery compared with lesional patients. In this study, we aimed to characterize a large group of patients with focal epilepsy who underwent epilepsy surgery despite a normal MRI and had no lesion on histopathology. Determinants of their postoperative seizure outcomes were further studied. METHODS: We designed an observational multicenter cohort study of MRI-negative and histopathology-negative patients who were derived from the European Epilepsy Brain Bank and underwent epilepsy surgery between 2000 and 2012 in 34 epilepsy surgery centers within Europe. We collected data on clinical characteristics, presurgical assessment, including genetic testing, surgery characteristics, postoperative outcome, and treatment regimen. RESULTS: Of the 217 included patients, 40% were seizure-free (Engel I) 2 years after surgery and one-third of patients remained seizure-free after 5 years. Temporal lobe surgery (adjusted odds ratio [AOR]: 2.62; 95% CI 1.19-5.76), shorter epilepsy duration (AOR for duration: 0.94; 95% CI 0.89-0.99), and completely normal histopathologic findings-versus nonspecific reactive gliosis-(AOR: 4.69; 95% CI 1.79-11.27) were significantly associated with favorable seizure outcome at 2 years after surgery. Of patients who underwent invasive monitoring, only 35% reached seizure freedom at 2 years. Patients with parietal lobe resections had lowest seizure freedom rates (12.5%). Among temporal lobe surgery patients, there was a trend toward favorable outcome if hippocampectomy was part of the resection strategy (OR: 2.94; 95% CI 0.98-8.80). Genetic testing was only sporadically performed. DISCUSSION: This study shows that seizure freedom can be reached in 40% of nonlesional patients with both normal MRI and histopathology findings. In particular, nonlesional temporal lobe epilepsy should be regarded as a relatively favorable group, with almost half of patients achieving seizure freedom at 2 years after surgery-even more if the hippocampus is resected-compared with only 1 in 5 nonlesional patients who underwent extratemporal surgery. Patients with an electroclinically identified focus, who are nonlesional, will be a promising group for advanced molecular-genetic analysis of brain tissue specimens to identify new brain somatic epilepsy genes or epilepsy-associated molecular pathways.


Asunto(s)
Epilepsias Parciales , Epilepsia del Lóbulo Temporal , Epilepsia , Humanos , Estudios de Cohortes , Electroencefalografía , Epilepsias Parciales/diagnóstico por imagen , Epilepsias Parciales/cirugía , Epilepsia/diagnóstico por imagen , Epilepsia/cirugía , Epilepsia del Lóbulo Temporal/cirugía , Imagen por Resonancia Magnética , Estudios Retrospectivos , Convulsiones , Resultado del Tratamiento
6.
Epilepsia Open ; 9(1): 417-423, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37805811

RESUMEN

Biallelic CNTNAP2 variants have been associated with Pitt-Hopkins-like syndrome. We describe six novel and one previously reported patients from six independent families and review the literature including 64 patients carrying biallelic CNTNAP2 variants. Initial reports highlighted intractable focal seizures and the failure of epilepsy surgery in children, but subsequent reports did not expand on this aspect. In all our patients (n = 7), brain MRI showed bilateral temporal gray/white matter blurring with white matter high signal intensity, more obvious on the T2-FLAIR sequences, consistent with bilateral temporal lobe dysplasia. All patients had focal seizures with temporal lobe onset and semiology, which were recorded on EEG in five, showing bilateral independent temporal onset in four. Epilepsy was responsive to anti-seizure medications in two patients (2/7, 28.5%), and pharmaco-resistant in five (5/7, 71.5%). Splice-site variants identified in five patients (5/7, 71.5%) were the most common mutational finding. Our observation expands the phenotypic and genetic spectrum of biallelic CNTNAP2 alterations focusing on the neuroimaging features and provides evidence for an elective bilateral anatomoelectroclinical involvement of the temporal lobes in the associated epilepsy, with relevant implications on clinical management.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Niño , Humanos , Epilepsia del Lóbulo Temporal/genética , Epilepsia del Lóbulo Temporal/cirugía , Electroencefalografía , Epilepsia/complicaciones , Lóbulo Temporal/diagnóstico por imagen , Lóbulo Temporal/cirugía , Convulsiones/genética , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética
7.
Brain ; 146(8): 3404-3415, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-36852571

RESUMEN

Focal cortical dysplasia (FCD) type II is a highly epileptogenic developmental malformation and a common cause of surgically treated drug-resistant epilepsy. While clinical observations suggest frequent occurrence in the frontal lobe, mechanisms for such propensity remain unexplored. Here, we hypothesized that cortex-wide spatial associations of FCD distribution with cortical cytoarchitecture, gene expression and organizational axes may offer complementary insights into processes that predispose given cortical regions to harbour FCD. We mapped the cortex-wide MRI distribution of FCDs in 337 patients collected from 13 sites worldwide. We then determined its associations with (i) cytoarchitectural features using histological atlases by Von Economo and Koskinas and BigBrain; (ii) whole-brain gene expression and spatiotemporal dynamics from prenatal to adulthood stages using the Allen Human Brain Atlas and PsychENCODE BrainSpan; and (iii) macroscale developmental axes of cortical organization. FCD lesions were preferentially located in the prefrontal and fronto-limbic cortices typified by low neuron density, large soma and thick grey matter. Transcriptomic associations with FCD distribution uncovered a prenatal component related to neuroglial proliferation and differentiation, likely accounting for the dysplastic makeup, and a postnatal component related to synaptogenesis and circuit organization, possibly contributing to circuit-level hyperexcitability. FCD distribution showed a strong association with the anterior region of the antero-posterior axis derived from heritability analysis of interregional structural covariance of cortical thickness, but not with structural and functional hierarchical axes. Reliability of all results was confirmed through resampling techniques. Multimodal associations with cytoarchitecture, gene expression and axes of cortical organization indicate that prenatal neurogenesis and postnatal synaptogenesis may be key points of developmental vulnerability of the frontal lobe to FCD. Concordant with a causal role of atypical neuroglial proliferation and growth, our results indicate that FCD-vulnerable cortices display properties indicative of earlier termination of neurogenesis and initiation of cell growth. They also suggest a potential contribution of aberrant postnatal synaptogenesis and circuit development to FCD epileptogenicity.


Asunto(s)
Displasia Cortical Focal , Malformaciones del Desarrollo Cortical , Humanos , Reproducibilidad de los Resultados , Malformaciones del Desarrollo Cortical/diagnóstico por imagen , Malformaciones del Desarrollo Cortical/genética , Malformaciones del Desarrollo Cortical/patología , Encéfalo/patología , Imagen por Resonancia Magnética/métodos
8.
Pract Neurol ; 23(4): 293-302, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36823117

RESUMEN

Focal cortical dysplasia (FCD) is a malformation of cortical development characterised by disruption of cortical cytoarchitecture. Classification of FCDs subtypes has initially been based on correlation of the histopathology with relevant clinical, electroencephalographic and neuroimaging features. A recently proposed classification update recommends a multilayered, genotype-phenotype approach, integrating findings from histopathology, genetic analysis of resected tissue and presurgical MRI. FCDs are caused either by single somatic activating mutations in MTOR pathway genes or by double-hit inactivating mutations with a constitutional and a somatic loss-of-function mutation in repressors of the signalling pathway. Mild malformation with oligodendroglial hyperplasia in epilepsy is caused by somatic pathogenic SLC35A2 mutations. FCDs most often present with drug-resistant focal epilepsy or epileptic encephalopathy. Most patients respond to surgical treatment. The use of mechanistic target of rapamycin inhibitors may complement the surgical approach. Treatment approaches and outcomes have improved with advances in neuroimaging, neurophysiology and genetics, although predictors of treatment response have only been determined in part.


Asunto(s)
Epilepsia Refractaria , Epilepsia , Displasia Cortical Focal , Malformaciones del Desarrollo Cortical , Humanos , Malformaciones del Desarrollo Cortical/diagnóstico por imagen , Malformaciones del Desarrollo Cortical/genética , Malformaciones del Desarrollo Cortical/terapia , Neurólogos , Epilepsia/patología , Mutación
9.
Neurology ; 100(5): e528-e542, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36307217

RESUMEN

BACKGROUND AND OBJECTIVES: The SLC35A2 gene, located at chromosome Xp11.23, encodes for a uridine diphosphate-galactose transporter. We describe clinical, genetic, neuroimaging, EEG, and histopathologic findings and assess possible predictors of postoperative seizure and cognitive outcome in 47 patients with refractory epilepsy and brain somatic SLC35A2 gene variants. METHODS: This is a retrospective multicenter study where we performed a descriptive analysis and classical hypothesis testing. We included the variables of interest significantly associated with the outcomes in the generalized linear models. RESULTS: Two main phenotypes were associated with brain somatic SLC35A2 variants: (1) early epileptic encephalopathy (EE, 39 patients) with epileptic spasms as the predominant seizure type and moderate to severe intellectual disability and (2) drug-resistant focal epilepsy (DR-FE, 8 patients) associated with normal/borderline cognitive function and specific neuropsychological deficits. Brain MRI was abnormal in all patients with EE and in 50% of those with DR-FE. Histopathology review identified mild malformation of cortical development with oligodendroglial hyperplasia in epilepsy in 44/47 patients and was inconclusive in 3. The 47 patients harbored 42 distinct mosaic SLC35A2 variants, including 14 (33.3%) missense, 13 (30.9%) frameshift, 10 (23.8%) nonsense, 4 (9.5%) in-frame deletions/duplications, and 1 (2.4%) splicing variant. Variant allele frequencies (VAFs) ranged from 1.4% to 52.6% (mean VAF: 17.3 ± 13.5). At last follow-up (35.5 ± 21.5 months), 30 patients (63.8%) were in Engel Class I, of which 26 (55.3%) were in Class IA. Cognitive performances remained unchanged in most patients after surgery. Regression analyses showed that the probability of achieving both Engel Class IA and Class I outcomes, adjusted by age at seizure onset, was lower when the duration of epilepsy increased and higher when postoperative EEG was normal or improved. Lower brain VAF was associated with improved postoperative cognitive outcome in the analysis of associations, but this finding was not confirmed in regression analyses. DISCUSSION: Brain somatic SLC35A2 gene variants are associated with 2 main clinical phenotypes, EE and DR-FE, and a histopathologic diagnosis of MOGHE. Additional studies will be needed to delineate any possible correlation between specific genetic variants, mutational load in the epileptogenic tissue, and surgical outcomes.


Asunto(s)
Epilepsia Refractaria , Epilepsia , Humanos , Epilepsia Refractaria/genética , Epilepsia Refractaria/cirugía , Epilepsia Refractaria/patología , Encéfalo/diagnóstico por imagen , Encéfalo/cirugía , Encéfalo/patología , Epilepsia/genética , Epilepsia/cirugía , Epilepsia/diagnóstico , Convulsiones/patología , Estudios Retrospectivos , Resultado del Tratamiento , Electroencefalografía
10.
Neurosurgery ; 91(5): 676-683, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35960753

RESUMEN

BACKGROUND: Temporal lobe epilepsy (TLE) surgery is associated with the best seizure outcome in adults, although its long-term results remain suboptimal. Retrospective pediatric studies suggest better figures whose determinants are poorly understood. OBJECTIVE: To conduct a systematic review and meta-analysis of studies on the efficacy of TLE surgery in children (age younger than 18 years) and adults. METHODS: We searched MEDLINE, Embase, and Cochrane Library for TLE surgery original research from January 1, 1990, until May 12, 2020. The outcome measures were seizure freedom since surgery and seizure freedom either at last or longest follow-up. We meta-analyzed the proportion of children and adults achieving either Engel I/International League Against Epilepsy (ILAE) 1 or Engel IA/ILAE 1A outcome by follow-up duration, type of surgery, histopathology, neuroimaging, quality of the studies, and publication period. We used a random effects model with Freeman-Tukey double arcsine transformation of proportions. RESULTS: From 40 409 records identified, we included 277 studies (30 848 patients). The proportions of patients achieving Engel I/ILAE 1 and Engel IA/ILAE 1A outcomes were 0.74 (95% CI, 0.69-0.78) and 0.61 (0.48-0.74) for children and 0.69 (0.67-0.71) and 0.56 (0.52-0.60) for adults. Histopathology significantly influenced Engel I/ILAE 1 outcome in adults but not in children ( P < .0001), while the type of surgery significantly influenced Engel I/ILAE 1 outcome in children but not in adults. CONCLUSION: The proportion of seizure freedom after TLE surgery was higher in children, although not significantly. Histopathology and the surgical approach can influence seizure outcome, with age-related variability.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Adolescente , Adulto , Niño , Epilepsia/complicaciones , Epilepsia del Lóbulo Temporal/complicaciones , Epilepsia del Lóbulo Temporal/cirugía , Humanos , Estudios Retrospectivos , Convulsiones/complicaciones , Convulsiones/cirugía , Resultado del Tratamiento
11.
Epilepsia Open ; 7(4): 810-816, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35869793

RESUMEN

We describe a case of epileptic encephalopathy in a young woman with undiagnosed medium-chain acyl-coenzyme A dehydrogenase deficiency (MCADD), who presented with an early-onset focal motor status epilepticus (SE) then followed by permanent left hemiplegia and drug-resistant epilepsy with neurodevelopmental delay. Throughout her clinical history, recurrent episodes of lethargy, feeding difficulties, and clustering seizures occurred, progressing into a super refractory SE and death at the age of 25 years. Although epilepsy is not a distinctive feature of MCADD, we advise considering this metabolic disease as a possible etiology of epileptic encephalopathy and hemiconvulsion-hemiplegia-epilepsy syndrome of unknown origin, on the chance to provide a timely and targeted treatment preventing development delay and evolution to SE. Adult patients with epilepsy of unknown etiology not screened at birth for inborn errors of metabolism, such as MCADD, should be promptly investigated for these treatable conditions.


Asunto(s)
Epilepsia , Errores Innatos del Metabolismo Lipídico , Estado Epiléptico , Humanos , Recién Nacido , Femenino , Adulto , Hemiplejía , Acil-CoA Deshidrogenasa , Errores Innatos del Metabolismo Lipídico/diagnóstico
12.
Brain ; 145(8): 2687-2703, 2022 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-35675510

RESUMEN

Vacuolar-type H+-ATPase (V-ATPase) is a multimeric complex present in a variety of cellular membranes that acts as an ATP-dependent proton pump and plays a key role in pH homeostasis and intracellular signalling pathways. In humans, 22 autosomal genes encode for a redundant set of subunits allowing the composition of diverse V-ATPase complexes with specific properties and expression. Sixteen subunits have been linked to human disease. Here we describe 26 patients harbouring 20 distinct pathogenic de novo missense ATP6V1A variants, mainly clustering within the ATP synthase α/ß family-nucleotide-binding domain. At a mean age of 7 years (extremes: 6 weeks, youngest deceased patient to 22 years, oldest patient) clinical pictures included early lethal encephalopathies with rapidly progressive massive brain atrophy, severe developmental epileptic encephalopathies and static intellectual disability with epilepsy. The first clinical manifestation was early hypotonia, in 70%; 81% developed epilepsy, manifested as developmental epileptic encephalopathies in 58% of the cohort and with infantile spasms in 62%; 63% of developmental epileptic encephalopathies failed to achieve any developmental, communicative or motor skills. Less severe outcomes were observed in 23% of patients who, at a mean age of 10 years and 6 months, exhibited moderate intellectual disability, with independent walking and variable epilepsy. None of the patients developed communicative language. Microcephaly (38%) and amelogenesis imperfecta/enamel dysplasia (42%) were additional clinical features. Brain MRI demonstrated hypomyelination and generalized atrophy in 68%. Atrophy was progressive in all eight individuals undergoing repeated MRIs. Fibroblasts of two patients with developmental epileptic encephalopathies showed decreased LAMP1 expression, Lysotracker staining and increased organelle pH, consistent with lysosomal impairment and loss of V-ATPase function. Fibroblasts of two patients with milder disease, exhibited a different phenotype with increased Lysotracker staining, decreased organelle pH and no significant modification in LAMP1 expression. Quantification of substrates for lysosomal enzymes in cellular extracts from four patients revealed discrete accumulation. Transmission electron microscopy of fibroblasts of four patients with variable severity and of induced pluripotent stem cell-derived neurons from two patients with developmental epileptic encephalopathies showed electron-dense inclusions, lipid droplets, osmiophilic material and lamellated membrane structures resembling phospholipids. Quantitative assessment in induced pluripotent stem cell-derived neurons identified significantly smaller lysosomes. ATP6V1A-related encephalopathy represents a new paradigm among lysosomal disorders. It results from a dysfunctional endo-lysosomal membrane protein causing altered pH homeostasis. Its pathophysiology implies intracellular accumulation of substrates whose composition remains unclear, and a combination of developmental brain abnormalities and neurodegenerative changes established during prenatal and early postanal development, whose severity is variably determined by specific pathogenic variants.


Asunto(s)
Encefalopatías , Epilepsia , Discapacidad Intelectual , Espasmos Infantiles , ATPasas de Translocación de Protón Vacuolares , Adenosina Trifosfato , Atrofia , Niño , Homeostasis , Humanos , Lactante , Lisosomas , Fenotipo
13.
Brain ; 145(5): 1653-1667, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35416942

RESUMEN

Epilepsy presurgical investigation may include focal intracortical single-pulse electrical stimulations with depth electrodes, which induce cortico-cortical evoked potentials at distant sites because of white matter connectivity. Cortico-cortical evoked potentials provide a unique window on functional brain networks because they contain sufficient information to infer dynamical properties of large-scale brain connectivity, such as preferred directionality and propagation latencies. Here, we developed a biologically informed modelling approach to estimate the neural physiological parameters of brain functional networks from the cortico-cortical evoked potentials recorded in a large multicentric database. Specifically, we considered each cortico-cortical evoked potential as the output of a transient stimulus entering the stimulated region, which directly propagated to the recording region. Both regions were modelled as coupled neural mass models, the parameters of which were estimated from the first cortico-cortical evoked potential component, occurring before 80 ms, using dynamic causal modelling and Bayesian model inversion. This methodology was applied to the data of 780 patients with epilepsy from the F-TRACT database, providing a total of 34 354 bipolar stimulations and 774 445 cortico-cortical evoked potentials. The cortical mapping of the local excitatory and inhibitory synaptic time constants and of the axonal conduction delays between cortical regions was obtained at the population level using anatomy-based averaging procedures, based on the Lausanne2008 and the HCP-MMP1 parcellation schemes, containing 130 and 360 parcels, respectively. To rule out brain maturation effects, a separate analysis was performed for older (>15 years) and younger patients (<15 years). In the group of older subjects, we found that the cortico-cortical axonal conduction delays between parcels were globally short (median = 10.2 ms) and only 16% were larger than 20 ms. This was associated to a median velocity of 3.9 m/s. Although a general lengthening of these delays with the distance between the stimulating and recording contacts was observed across the cortex, some regions were less affected by this rule, such as the insula for which almost all efferent and afferent connections were faster than 10 ms. Synaptic time constants were found to be shorter in the sensorimotor, medial occipital and latero-temporal regions, than in other cortical areas. Finally, we found that axonal conduction delays were significantly larger in the group of subjects younger than 15 years, which corroborates that brain maturation increases the speed of brain dynamics. To our knowledge, this study is the first to provide a local estimation of axonal conduction delays and synaptic time constants across the whole human cortex in vivo, based on intracerebral electrophysiological recordings.


Asunto(s)
Epilepsia , Potenciales Evocados , Teorema de Bayes , Encéfalo , Mapeo Encefálico/métodos , Estimulación Eléctrica/métodos , Potenciales Evocados/fisiología , Humanos
14.
Neurol Sci ; 43(7): 4453-4461, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35312881

RESUMEN

The current study, conceived with the contribution of the Commission for Epilepsy Surgery of the Italian League Against Epilepsy (LICE) and the Epilepsy Study Group of the Italian Neurological Society (SIN), aimed to assess potential physician-related barriers to refer subjects for epilepsy surgery. All the members of SIN and LICE were invited by email to complete a 28-item online questionnaire. The survey items included: (1) individual and medical practice characteristics, (2) knowledge of current indications to select candidates for epilepsy surgery, (3) factors potentially affecting the attitude toward epilepsy surgery. Overall, 210 physicians completed the survey. More than half (63.3%) of the participants showed proper knowledge of the ILAE drug-resistance. Definition and almost two-thirds of them (71.9%) considered themselves adequately informed about indications, risks, and benefits of epilepsy surgery. Surgery was regarded as a valid option to be used as early as possible by 84.8% of the interviewees, and 71% of them estimated its complication rate to be low. However, more than half (63%) of the respondents reportedly referred patients for surgery only after the failure of 3-5 antiseizure medications. Overestimation of risks/complications of surgery and inadequate healthcare resources were identified as the main factor contrasting the patient referral for surgery by 43% and 40.5% of the participants, respectively. In conclusion, this survey confirms the existence of knowledge gap within both physicians and the healthcare system, as well as an educational need regarding epilepsy surgery. Further researches are warranted to define learning outcomes and optimize educational tools.


Asunto(s)
Epilepsia , Médicos , Epilepsia/tratamiento farmacológico , Epilepsia/cirugía , Conocimientos, Actitudes y Práctica en Salud , Humanos , Neurólogos , Encuestas y Cuestionarios
15.
Epilepsia ; 63(4): 769-776, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35165888

RESUMEN

OBJECTIVE: Temporal plus epilepsy (TPE) represents a rare type of epilepsy characterized by a complex epileptogenic zone including the temporal lobe and the close neighboring structures. We investigated whether the complete resection of temporal plus epileptogenic zone as defined through stereoelectroencephalography (SEEG) might improve seizure outcome in 38 patients with TPE. METHODS: Inclusion criteria were as follows: epilepsy surgery performed between January 1990 and December 2001, SEEG defining a temporal plus epileptogenic zone, unilobar temporal operations ("temporal lobe epilepsy [TLE] surgery") or multilobar interventions including the temporal lobe ("TPE surgery"), magnetic resonance imaging either normal or showing signs of hippocampal sclerosis, and postoperative follow-up of at least 12 months. For each assessment of postoperative seizure outcome, at 1, 2, 5, and 10 years, we carried out descriptive analysis and classical tests of hypothesis, namely, Pearson χ2 test or Fisher exact test of independence on tables of frequency for each categorical variable of interest and Student t-test for each continuous variable of interest, when appropriate. RESULTS: Twenty-one patients underwent TPE surgery and 17 underwent TLE surgery with a follow-up of 12.4 ± 8.16 years. In the multivariate models, there was a significant effect of the time from surgery on Engel Class IA versus IB-IV outcome, with a steadily worsening trend from 5-year follow-up onward. TPE surgery was associated with better results than TLE surgery. SIGNIFICANCE: This study suggests that surgical outcome in patients with TPE can be improved by a tailored, multilobar resection and confirms that SEEG is mandatory when a TPE is suspected.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Electroencefalografía/métodos , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/cirugía , Humanos , Estudios Retrospectivos , Convulsiones , Resultado del Tratamiento
16.
Epilepsia ; 63(1): 61-74, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34845719

RESUMEN

OBJECTIVE: Drug-resistant focal epilepsy is often caused by focal cortical dysplasias (FCDs). The distribution of these lesions across the cerebral cortex and the impact of lesion location on clinical presentation and surgical outcome are largely unknown. We created a neuroimaging cohort of patients with individually mapped FCDs to determine factors associated with lesion location and predictors of postsurgical outcome. METHODS: The MELD (Multi-centre Epilepsy Lesion Detection) project collated a retrospective cohort of 580 patients with epilepsy attributed to FCD from 20 epilepsy centers worldwide. Magnetic resonance imaging-based maps of individual FCDs with accompanying demographic, clinical, and surgical information were collected. We mapped the distribution of FCDs, examined for associations between clinical factors and lesion location, and developed a predictive model of postsurgical seizure freedom. RESULTS: FCDs were nonuniformly distributed, concentrating in the superior frontal sulcus, frontal pole, and temporal pole. Epilepsy onset was typically before the age of 10 years. Earlier epilepsy onset was associated with lesions in primary sensory areas, whereas later epilepsy onset was associated with lesions in association cortices. Lesions in temporal and occipital lobes tended to be larger than frontal lobe lesions. Seizure freedom rates varied with FCD location, from around 30% in visual, motor, and premotor areas to 75% in superior temporal and frontal gyri. The predictive model of postsurgical seizure freedom had a positive predictive value of 70% and negative predictive value of 61%. SIGNIFICANCE: FCD location is an important determinant of its size, the age at epilepsy onset, and the likelihood of seizure freedom postsurgery. Our atlas of lesion locations can be used to guide the radiological search for subtle lesions in individual patients. Our atlas of regional seizure freedom rates and associated predictive model can be used to estimate individual likelihoods of postsurgical seizure freedom. Data-driven atlases and predictive models are essential for evidence-based, precision medicine and risk counseling in epilepsy.


Asunto(s)
Epilepsia Refractaria , Epilepsia , Malformaciones del Desarrollo Cortical , Niño , Epilepsia Refractaria/complicaciones , Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/cirugía , Epilepsia/diagnóstico por imagen , Epilepsia/etiología , Epilepsia/cirugía , Libertad , Humanos , Imagen por Resonancia Magnética , Malformaciones del Desarrollo Cortical/complicaciones , Malformaciones del Desarrollo Cortical/diagnóstico por imagen , Malformaciones del Desarrollo Cortical/cirugía , Estudios Retrospectivos , Convulsiones/diagnóstico por imagen , Convulsiones/etiología , Convulsiones/cirugía , Resultado del Tratamiento
17.
Neurology ; 97(16): e1571-e1582, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34521691

RESUMEN

BACKGROUND AND OBJECTIVE: To test the hypothesis that a multicenter-validated computer deep learning algorithm detects MRI-negative focal cortical dysplasia (FCD). METHODS: We used clinically acquired 3-dimensional (3D) T1-weighted and 3D fluid-attenuated inversion recovery MRI of 148 patients (median age 23 years [range 2-55 years]; 47% female) with histologically verified FCD at 9 centers to train a deep convolutional neural network (CNN) classifier. Images were initially deemed MRI-negative in 51% of patients, in whom intracranial EEG determined the focus. For risk stratification, the CNN incorporated bayesian uncertainty estimation as a measure of confidence. To evaluate performance, detection maps were compared to expert FCD manual labels. Sensitivity was tested in an independent cohort of 23 cases with FCD (13 ± 10 years). Applying the algorithm to 42 healthy controls and 89 controls with temporal lobe epilepsy disease tested specificity. RESULTS: Overall sensitivity was 93% (137 of 148 FCD detected) using a leave-one-site-out cross-validation, with an average of 6 false positives per patient. Sensitivity in MRI-negative FCD was 85%. In 73% of patients, the FCD was among the clusters with the highest confidence; in half, it ranked the highest. Sensitivity in the independent cohort was 83% (19 of 23; average of 5 false positives per patient). Specificity was 89% in healthy and disease controls. DISCUSSION: This first multicenter-validated deep learning detection algorithm yields the highest sensitivity to date in MRI-negative FCD. By pairing predictions with risk stratification, this classifier may assist clinicians in adjusting hypotheses relative to other tests, increasing diagnostic confidence. Moreover, generalizability across age and MRI hardware makes this approach ideal for presurgical evaluation of MRI-negative epilepsy. CLASSIFICATION OF EVIDENCE: This study provides Class III evidence that deep learning on multimodal MRI accurately identifies FCD in patients with epilepsy initially diagnosed as MRI negative.


Asunto(s)
Aprendizaje Profundo , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Malformaciones del Desarrollo Cortical/diagnóstico por imagen , Neuroimagen/métodos , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Adulto Joven
19.
Ann Neurol ; 90(2): 274-284, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34185323

RESUMEN

OBJECTIVE: The MAST family of microtubule-associated serine-threonine kinases (STKs) have distinct expression patterns in the developing and mature human and mouse brain. To date, only MAST1 has been conclusively associated with neurological disease, with de novo variants in individuals with a neurodevelopmental disorder, including a mega corpus callosum. METHODS: Using exome sequencing, we identify MAST3 missense variants in individuals with epilepsy. We also assess the effect of these variants on the ability of MAST3 to phosphorylate the target gene product ARPP-16 in HEK293T cells. RESULTS: We identify de novo missense variants in the STK domain in 11 individuals, including 2 recurrent variants p.G510S (n = 5) and p.G515S (n = 3). All 11 individuals had developmental and epileptic encephalopathy, with 8 having normal development prior to seizure onset at <2 years of age. All patients developed multiple seizure types, 9 of 11 patients had seizures triggered by fever and 9 of 11 patients had drug-resistant seizures. In vitro analysis of HEK293T cells transfected with MAST3 cDNA carrying a subset of these patient-specific missense variants demonstrated variable but generally lower expression, with concomitant increased phosphorylation of the MAST3 target, ARPP-16, compared to wild-type. These findings suggest the patient-specific variants may confer MAST3 gain-of-function. Moreover, single-nuclei RNA sequencing and immunohistochemistry shows that MAST3 expression is restricted to excitatory neurons in the cortex late in prenatal development and postnatally. INTERPRETATION: In summary, we describe MAST3 as a novel epilepsy-associated gene with a potential gain-of-function pathogenic mechanism that may be primarily restricted to excitatory neurons in the cortex. ANN NEUROL 2021;90:274-284.


Asunto(s)
Epilepsia/diagnóstico por imagen , Epilepsia/genética , Variación Genética/genética , Proteínas Asociadas a Microtúbulos/genética , Proteínas Serina-Treonina Quinasas/genética , Adolescente , Adulto , Secuencia de Aminoácidos , Animales , Niño , Estudios de Cohortes , Epilepsia/metabolismo , Femenino , Estudios de Seguimiento , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/biosíntesis , Proteínas Serina-Treonina Quinasas/biosíntesis , Adulto Joven
20.
Ann Diagn Pathol ; 54: 151774, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34182416

RESUMEN

Dysembryoplastic neuroepithelial tumors (DNT) is a benign (World Health Organisation, WHO, grade I) glioneuronal tumor and it represent one of the most frequent neoplasm in patient affected by seizures. The epileptic neuronal activity can be determined by abnormal synchronization, excessive glutamate excitation and\or inadequate GABA inhibition. Increasing evidence suggests that the astrocytes might be involved in this process even if neurons play a relevant role. In particular astrocytes promote the clearance of glutamate, a potent excitatory neurotransmitter of the central nervous system. Indeed, elevated concentrations of extracellular glutamate may determine iper-excitability and seizures as well as other neurological disorders. So, astrocytes, converting glutamate into glutamine via the enzyme glutamine synthetase (GS), could play a protective anti-seizures role. In the present study, we analyzed the immunohistochemical expression of GS in 20 DNTs specimens documenting a constant immunoistochemical expression of GS in astrocytes of the lesional tissue and of the cerebral cortex.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Glutamato-Amoníaco Ligasa/metabolismo , Neoplasias Neuroepiteliales/metabolismo , Adolescente , Astrocitos/metabolismo , Astrocitos/patología , Neoplasias Encefálicas/patología , Niño , Preescolar , Femenino , Glioma/patología , Humanos , Inmunohistoquímica/métodos , Masculino , Neoplasias Neuroepiteliales/patología , Neuronas/patología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...