Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 128(25): 259602, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35802453
2.
Phys Rev Lett ; 127(2): 025902, 2021 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-34296915

RESUMEN

Anomalous heat transport in one-dimensional nanostructures, such as nanotubes and nanowires, is a widely debated problem in condensed matter and statistical physics, with contradicting pieces of evidence from experiments and simulations. Using a comprehensive modeling approach, comprised of lattice dynamics and molecular dynamics simulations, we proved that the infinite length limit of the thermal conductivity of a (10,0) single-wall carbon nanotube is finite but this limit is reached only for macroscopic lengths due to a thermal phonon mean free path of several millimeters. Our calculations showed that the extremely high thermal conductivity of this system at room temperature is dictated by quantum effects. Modal analysis showed that the divergent nature of thermal conductivity, observed in one-dimensional model systems, is suppressed in carbon nanotubes by anharmonic scattering channels provided by the flexural and optical modes with polarization in the plane orthogonal to the transport direction.

3.
Nat Commun ; 10(1): 3853, 2019 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-31451703

RESUMEN

We introduce a novel approach to model heat transport in solids, based on the Green-Kubo theory of linear response. It naturally bridges the Boltzmann kinetic approach in crystals and the Allen-Feldman model in glasses, leveraging interatomic force constants and normal-mode linewidths computed at mechanical equilibrium. At variance with molecular dynamics, our approach naturally and easily accounts for quantum mechanical effects in energy transport. Our methodology is carefully validated against results for crystalline and amorphous silicon from equilibrium molecular dynamics and, in the former case, from the Boltzmann transport equation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA