Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Cancer ; 22(1): 254, 2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35264144

RESUMEN

BACKGROUND: The standard treatment for patients with advanced HER2-positive gastric cancer is a combination of the antibody trastuzumab and platin-fluoropyrimidine chemotherapy. As some patients do not respond to trastuzumab therapy or develop resistance during treatment, the search for alternative treatment options and biomarkers to predict therapy response is the focus of research. We compared the efficacy of trastuzumab and other HER-targeting drugs such as cetuximab and afatinib. We also hypothesized that treatment-dependent regulation of a gene indicates its importance in response and that it can therefore be used as a biomarker for patient stratification. METHODS: A selection of gastric cancer cell lines (Hs746T, MKN1, MKN7 and NCI-N87) was treated with EGF, cetuximab, trastuzumab or afatinib for a period of 4 or 24 h. The effects of treatment on gene expression were measured by RNA sequencing and the resulting biomarker candidates were tested in an available cohort of gastric cancer patients from the VARIANZ trial or functionally analyzed in vitro. RESULTS: After treatment of the cell lines with afatinib, the highest number of regulated genes was observed, followed by cetuximab and trastuzumab. Although trastuzumab showed only relatively small effects on gene expression, BMF, HAS2 and SHB could be identified as candidate biomarkers for response to trastuzumab. Subsequent studies confirmed HAS2 and SHB as potential predictive markers for response to trastuzumab therapy in clinical samples from the VARIANZ trial. AREG, EREG and HBEGF were identified as candidate biomarkers for treatment with afatinib and cetuximab. Functional analysis confirmed that HBEGF is a resistance factor for cetuximab. CONCLUSION: By confirming HAS2, SHB and HBEGF as biomarkers for anti-HER therapies, we provide evidence that the regulation of gene expression after treatment can be used for biomarker discovery. TRIAL REGISTRATION: Clinical specimens of the VARIANZ study (NCT02305043) were used to test biomarker candidates.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Factor de Crecimiento Similar a EGF de Unión a Heparina/genética , Hialuronano Sintasas/genética , Proteínas Proto-Oncogénicas/genética , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Afatinib/farmacología , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Cetuximab/farmacología , Resistencia a Antineoplásicos/genética , Expresión Génica/efectos de los fármacos , Humanos , Receptor ErbB-2/efectos de los fármacos , Trastuzumab/farmacología
3.
BMC Cancer ; 20(1): 1039, 2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33115415

RESUMEN

BACKGROUND: Gastric cancer is the fifth most frequently diagnosed cancer and the third leading cause of cancer death worldwide. The molecular mechanisms of action for anti-HER-family drugs in gastric cancer cells are incompletely understood. We compared the molecular effects of trastuzumab and the other HER-family targeting drugs cetuximab and afatinib on phosphoprotein and gene expression level to gain insights into the regulated pathways. Moreover, we intended to identify genes involved in phenotypic effects of anti-HER therapies. METHODS: A time-resolved analysis of downstream intracellular kinases following EGF, cetuximab, trastuzumab and afatinib treatment was performed by Luminex analysis in the gastric cancer cell lines Hs746T, MKN1, MKN7 and NCI-N87. The changes in gene expression after treatment of the gastric cancer cell lines with EGF, cetuximab, trastuzumab or afatinib for 4 or 24 h were analyzed by RNA sequencing. Significantly enriched pathways and gene ontology terms were identified by functional enrichment analysis. Furthermore, effects of trastuzumab and afatinib on cell motility and apoptosis were analyzed by time-lapse microscopy and western blot for cleaved caspase 3. RESULTS: The Luminex analysis of kinase activity revealed no effects of trastuzumab, while alterations of AKT1, MAPK3, MEK1 and p70S6K1 activations were observed under cetuximab and afatinib treatment. On gene expression level, cetuximab mainly affected the signaling pathways, whereas afatinib had an effect on both signaling and cell cycle pathways. In contrast, trastuzumab had little effects on gene expression. Afatinib reduced average speed in MKN1 and MKN7 cells and induced apoptosis in NCI-N87 cells. Following treatment with afatinib, a list of 14 genes that might be involved in the decrease of cell motility and a list of 44 genes that might have a potential role in induction of apoptosis was suggested. The importance of one of these genes (HBEGF) as regulator of motility was confirmed by knockdown experiments. CONCLUSIONS: Taken together, we described the different molecular effects of trastuzumab, cetuximab and afatinib on kinase activity and gene expression. The phenotypic changes following afatinib treatment were reflected by altered biological functions indicated by overrepresentation of gene ontology terms. The importance of identified genes for cell motility was validated in case of HBEGF.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Fosfoproteínas/metabolismo , Neoplasias Gástricas/patología , Afatinib/administración & dosificación , Apoptosis , Biomarcadores de Tumor/genética , Ciclo Celular , Movimiento Celular , Proliferación Celular , Cetuximab/administración & dosificación , Perfilación de la Expresión Génica , Humanos , Fenotipo , Fosfoproteínas/genética , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Trastuzumab/administración & dosificación , Células Tumorales Cultivadas
4.
Neurobiol Dis ; 33(3): 448-58, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19111616

RESUMEN

At present the pathogenesis of CMT1A neuropathy, caused by the overexpression of PMP22, has not yet been entirely understood. The PMP22-overexpressing C61 mutant mouse is a suitable animal model, which mimics the human CMT1A disorder. We observed that myelin gene expression in the sciatic nerve of the C61 mouse was up-regulated at postnatal day 4 to 7 (P4-P7). When investigating the morphology of peripheral nerves in C61 and wildtype mice at early stages of postnatal development, hypermyelination could be detected in the femoral quadriceps and sciatic nerve of transgenic animals at postnatal day 7 (P7). In order to identify genes, other than Pmp22, that are modulated in sciatic nerve of P7 transgenic mice, we applied microarray technology. Amongst the regulated genes, the gene encoding the alpha-chemokine CXCL14 was most prominently up-regulated. We report that Cxcl14 was expressed exclusively by Schwann cells of the sciatic nerve, as well as by cultured Schwann cells triggered to differentiate. Furthermore, in cultured Schwann cells CXCL14 modulated the expression of myelin genes and altered cell proliferation. Our findings demonstrate that early overexpression of PMP22, in a mouse model of CMT1A, results in a strong up-regulation of CXCL14, which seems to play a novel regulatory role in Schwann cell differentiation.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Quimiocinas CXC/genética , Quimiocinas CXC/metabolismo , Proteína Básica de Mielina/genética , Proteína P0 de la Mielina/genética , Células de Schwann/metabolismo , Nervio Ciático/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Enfermedad de Charcot-Marie-Tooth/metabolismo , Modelos Animales de Enfermedad , Expresión Génica , Ratones , Ratones Transgénicos , Proteína Básica de Mielina/metabolismo , Proteína P0 de la Mielina/metabolismo , Proteínas de la Mielina/genética , Fibras Nerviosas Mielínicas/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes/metabolismo , Células de Schwann/citología , Células de Schwann/ultraestructura , Regulación hacia Arriba
5.
Toxicol In Vitro ; 20(1): 125-31, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16098711

RESUMEN

The scope of this study was to compare in vitro and in vivo cytochrome P450 (CYP) gene induction in mice, using liver slices as an in vitro model. We have chosen to study mice to be able to better interpret CYP induction during long-term safety studies in this species. Mouse liver slices were incubated with beta-naphthoflavone (betaNF), phenobarbital (PB) or dexamethasone (DEX) for 24 h. In addition, in an in vivo study, mice were treated with the same compounds for three days. The mRNA expression of cyp1a1, cyp1a2, cyp2b10 and cyp3a11, which are important for drug metabolism and inducible by xenobiotics, were investigated in vivo and in vitro by real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR). Both in mouse liver slices and in vivo, betaNF was found to be a potent inducer of cyp1a1 and to a lesser extent of cyp1a2. All three compounds induced cyp2b10 mRNA levels, while the cyp3a11 mRNA level was induced only by DEX. Overall, these data demonstrated a good predictive in vitro-in vivo correlation of CYP induction.


Asunto(s)
Bioensayo , Sistema Enzimático del Citocromo P-450/metabolismo , Hígado/enzimología , Animales , Sistema Enzimático del Citocromo P-450/genética , Dexametasona/farmacología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos , Fenobarbital/farmacología , ARN Mensajero/metabolismo , Activación Transcripcional , beta-naftoflavona/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA