Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Front Nutr ; 11: 1327863, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38414488

RESUMEN

Background: The aim of the present study was to identify the metabolomic signature of responders and non-responders to an omega-3 fatty acid (n-3 FA) supplementation, and to test the ability of a multi-omics classifier combining genomic, lipidomic, and metabolomic features to discriminate plasma triglyceride (TG) response phenotypes. Methods: A total of 208 participants of the Fatty Acid Sensor (FAS). Study took 5 g per day of fish oil, providing 1.9-2.2 g eicosapentaenoic acid (EPA) and 1.1 g docosahexaenoic (DHA) daily over a 6-week period, and were further divided into two subgroups: responders and non-responders, according to the change in plasma TG levels after the supplementation. Changes in plasma levels of 6 short-chain fatty acids (SCFA) and 25 bile acids (BA) during the intervention were compared between subgroups using a linear mixed model, and the impact of SCFAs and BAs on the TG response was tested in a mediation analysis. Genotyping was conducted using the Illumina Human Omni-5 Quad BeadChip. Mass spectrometry was used to quantify plasma TG and cholesterol esters levels, as well as plasma SCFA and BA levels. A classifier was developed and tested within the DIABLO framework, which implements a partial least squares-discriminant analysis to multi-omics analysis. Different classifiers were developed by combining data from genomics, lipidomics, and metabolomics. Results: Plasma levels of none of the SCFAs or BAs measured before and after the n-3 FA supplementation were significantly different between responders and non-responders. SCFAs but not BAs were marginally relevant in the classification of plasma TG responses. A classifier built by adding plasma SCFAs and lipidomic layers to genomic data was able to even the accuracy of 85% shown by the genomic predictor alone. Conclusion: These results inform on the marginal relevance of SCFA and BA plasma levels as surrogate measures of gut microbiome in the assessment of the interindividual variability observed in the plasma TG response to an n-3 FA supplementation. Genomic data still represent the best predictor of plasma TG response, and the inclusion of metabolomic data added little to the ability to discriminate the plasma TG response phenotypes.

3.
Front Nutr ; 10: 1104685, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37125033

RESUMEN

Background: Many studies show that the intake of raspberries is beneficial to immune-metabolic health, but the responses of individuals are heterogeneous and not fully understood. Methods: In a two-arm parallel-group, randomized, controlled trial, immune-metabolic outcomes and plasma metabolite levels were analyzed before and after an 8-week red raspberry consumption. Based on partial least squares discriminant analysis (PLS-DA) on plasma xenobiotic levels, adherence to the intervention was first evaluated. A second PLS-DA followed by hierarchical clustering was used to classify individuals into response subgroups. Clinical immune and metabolic outcomes, including insulin resistance (HOMA-IR) and sensitivity (Matsuda, QUICKI) indices, during the intervention were assessed and compared between response subgroups. Results: Two subgroups of participants, type 1 responders (n = 17) and type 2 responders (n = 5), were identified based on plasma metabolite levels measured during the intervention. Type 1 responders showed neutral to negative effects on immune-metabolic clinical parameters after raspberry consumption, and type 2 responders showed positive effects on the same parameters. Changes in waist circumference, waist-to-hip ratio, fasting plasma apolipoprotein B, C-reactive protein and insulin levels as well as Matsuda, HOMA-IR and QUICKI were significantly different between the two response subgroups. A deleterious effect of two carotenoid metabolites was also observed in type 1 responders but these variables were significantly associated with beneficial changes in the QUICKI index and in fasting insulin levels in type 2 responders. Increased 3-ureidopropionate levels were associated with a decrease in the Matsuda index in type 2 responders, suggesting that this metabolite is associated with a decrease in insulin sensitivity for those subjects, whereas the opposite was observed for type 1 responders. Conclusion: The beneficial effects associated with red raspberry consumption are subject to inter-individual variability. Metabolomics-based clustering appears to be an effective way to assess adherence to a nutritional intervention and to classify individuals according to their immune-metabolic responsiveness to the intervention. This approach may be replicated in future studies to provide a better understanding of how interindividual variability impacts the effects of nutritional interventions on immune-metabolic health.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...