Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Healthc Mater ; 12(26): e2300931, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37567219

RESUMEN

Articular cartilage defects represent an unsolved clinical challenge. Photopolymerizable hydrogels are attractive candidates supporting repair. This study investigates the short-term safety and efficacy of two novel hyaluronic acid (HA)-triethylene glycol (TEG)-coumarin hydrogels photocrosslinked in situ in a clinically relevant large animal model. It is hypothesized that HA-hydrogel-augmented microfracture (MFX) is superior to MFX in enhancing early cartilage repair, and that the molar degree of substitution and concentration of HA affects repair. Chondral full-thickness defects in the knees of adult minipigs are treated with either 1) debridement (No MFX), 2) debridement and MFX, 3) debridement, MFX, and HA hydrogel (30% molar derivatization, 30 mg mL-1 HA; F3) (MFX+F3), and 4) debridement, MFX, and HA hydrogel (40% molar derivatization, 20 mg mL-1 HA; F4) (MFX+F4). After 8 weeks postoperatively, MFX+F3 significantly improves total macroscopic and histological scores compared with all other groups without negative effects, besides significantly enhancing the individual repair parameters "defect architecture," "repair tissue surface" (compared with No MFX, MFX), and "subchondral bone" (compared with MFX). These data indicate that photopolymerizable HA hydrogels enable a favorable metastable microenvironment promoting early chondrogenesis in vivo. This work also uncovers a mechanism for effective HA-augmented cartilage repair by combining lower molar derivatization with higher concentrations.


Asunto(s)
Cartílago Articular , Animales , Porcinos , Cartílago Articular/patología , Porcinos Enanos , Ácido Hialurónico/farmacología , Hidrogeles/farmacología , Modelos Animales
2.
J Pharm Sci ; 111(9): 2505-2513, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35405122

RESUMEN

During osteoarthritis (OA) development, chondrocytes progressively decompensate, upregulating proteolytic enzymes and reducing the key growth factors involved in promoting chondrocyte anabolism. A combined therapeutic approach is needed to address this multifactorial pathology, which affects the whole joint. Based on the literature, three promising targets for OA treatment have been selected: MMP3 (matrix metallopeptidase 3), TRPV4 (transient receptor potential cation channel subfamily V member 4) and mTOR (mammalian target of rapamycin). In this study, a novel water-soluble and biocompatible amphiphilic polymer named "sHA-oleylamide" was synthesized and screened from a series of hyaluronic acid derivatives for its anticatabolic activity. This MMP inhibitor showed no cytotoxicity, and in an in vitro model of inflammatory OA, it reversed the inflammatory outcome at a concentration of 0.011 mg/mL. The ability of sHA-oleylamide to form 20-50 nm micelles in water with a critical micelle concentration of 0.27±0.1 mg/mL, was confirmed by TEM images and measured by Nile red staining. RN-1747 and rapamycin molecules were successfully loaded in sHA-oleylamide, previously prepared at 12 mg/mL in PBS; both formulations were stable, sterile and confirmed in vitro to have mTOR inhibition by rapamycin and TRPV4 activation activity by RN-1747. The controlled release of RN-1747 from the micellar formulation with sHA-oleylamide showed that only approximately 60% of the total loaded RN-1747 was released within 7 days. These micellar formulations can potentially increase the bioavailability and pharmaceutical efficacy of the selected active molecules, combining their anti-catabolic and pro-anabolic activities and making them suitable for i.a. administration as OA treatments.


Asunto(s)
Ácido Hialurónico , Osteoartritis , Sistemas de Liberación de Medicamentos , Humanos , Ácido Hialurónico/uso terapéutico , Micelas , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo , Osteoartritis/patología , Sirolimus , Sulfatos , Serina-Treonina Quinasas TOR/metabolismo , Canales Catiónicos TRPV , Agua/metabolismo
3.
Pharmaceutics ; 13(9)2021 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-34575526

RESUMEN

Interstitial cystitis (IC) or painful bladder syndrome is a chronic dysfunction due to an inflammatory condition, characterized by bladder pain and urinary frequency. Currently, no gold standard therapy is available since IC does not respond to conventional ones. Given these premises, the aim of this work was the in vitro characterization of biological properties (mucoadhesion and anti-inflammatory activity) of a commercial product (HydealCyst-HydC) based on hyaluronic acid (HA) and the benzyl ester of HA (Hydeal-D®) intended for bladder instillation to restore and/or protect the urothelial layer of glycosamino glycans (GAGs). The in vitro characterization demonstrated that an interaction product is formed between HA and Hydeal-D® that has a role in the rheological behavior and mucoadhesive properties. HA was identified as a key component to form the mucoadhesive joint, while the interaction of HA with Hydeal-D® improved polysaccharide stability and prolonged the activity ex vivo. Moreover, HydC is cytocompatible with urothelial cells (HTB-4) and possesses an anti-inflammatory effect towards these cells by decreasing the secretion of IL-6 and IL-8, which were both increased in patients with IC, and by increasing the secretion of sulfated GAGs. These two findings, along with the resilience properties of the formulation due to mucoadhesion, suggest the active role of HydC in protecting and restoring urothelium homeostasis.

4.
Mater Sci Eng C Mater Biol Appl ; 128: 112286, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34474837

RESUMEN

The number of total knee and/or hip replacements are expected to exceed 5 million a year by 2030; the incidence of biofilm-associated complications can vary from 1% in primary implants to 5.6% in case of revision. The purpose of this study was to test the ability of sHA-DA, a partially sulphated hyaluronic acid (sHA) functionalized with a dopamine (DA) moiety, to prevent acute bacterial growth in an in vivo model of an intra-operatively highly contaminated implant. Previously, in vitro studies showed that the DA moiety guarantees good performance as binding agent for titanium surface adhesion, while the negatively charged sHA has both a high efficiency in electrostatic binding of positively charged antibiotics, and bone regenerative effects. The in vitro testing also highlighted the effectiveness of the sHA-DA system in inhibiting bacterial spreading through a sustained release of the antibiotic payload from the implant coating. In this study the chemical stability of the sHA-DA to ß-ray sterilization was demonstrated, based on evaluation by NMR, SEC-TDA Omnisec and HPLC-MS analysis, thus supporting the approach of terminal sterilization of the coated implant with no loss of efficacy. Furthermore, an in vivo study in rabbits was performed according to UNI EN ISO 10993-6 to assess the histocompatibility of titanium nails pre-coated with sHA-DA. The implants, placed in the femoral medullary cavity and harvested after 12 weeks, proved to be histocompatible and to allow bone growth in adhesion to the metal surface. Finally, an in vivo model of bacterial contamination was set up by injecting 1 mL of bacterial suspension containing 104 or 106 CFU of methicillin-resistant Staphylococcus aureus (MRSA) into the femoral medullary cavity of 30 rabbits. Titanium nails either uncoated or pre-coated with sHA-DA and loaded directly by the surgeon with 5% vancomycin were implanted in the surgical site. After 1 week, only the animals treated with pre-coated nails did not show the presence of systemic or local bacterial infection, as confirmed by microbiology and histology (Smeltzer score). Further insights into the animal model setup are crucial, however the results obtained suggest that the system can be effective in preventing the onset of the bacterial infective process.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Animales , Antibacterianos/farmacología , Materiales Biocompatibles Revestidos/farmacología , Dopamina , Ácido Hialurónico/farmacología , Conejos , Titanio/farmacología
5.
Bioorg Med Chem ; 38: 116132, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33872958

RESUMEN

Since 2007, Metalloproteases (MMPs) have been considered potential targets for treating osteoarthritis (OA), for which the primary pathogenic event is the extensive degeneration of articular cartilage. MMP3 is an enzyme critical for these degenerative changes. However, problems of selectivity, low bioavailability and poor metabolic profile during clinical trials of MMPs inhibitors (MMPIs) led to limited beneficial effect and thus did not justify further pursuit of the clinical studies. In a previous work, a new alkyl derivative of hyaluronic acid (HA), HYADD4®, previously approved as intra-articular treatment for knee OA, was studied in vitro and in vivo as MMP3I. Molecular simulation studies confirmed the interaction between the alkyl side chain of this HA derivative and the additional S1' pocket of MMP3. However, the high MW and the polar HA backbone of HYADD4® imply a high desolvation energy cost, which can potentially decrease its inhibitory potency. In this study, a new class of MMP3Is based on a small peptide backbone (CGV) chemically derivatized with an alkyl chain was developed through interactive cycles of design, synthesis and screening, accompanied by computational evaluation and optimization. Two MMP3Is, e(I) and l(II), were selected because of their effective inhibitory activity (3.2 and 10.2 µM, respectively) and water solubility. Both MMPIs showed a broad range of inhibitory effects against almost all the MMPs tested. In an in vitro model of inflammatory OA, e(I) was the most effective MMPI: at the concentration of 93 µM, it reversed inflammatory outcomes. Moreover, because of its amphiphilic structure, the e(I) MMPI promoted stable micellar formulation at concentrations higher than 0.2 mg/mL in water. The findings were confirmed by TEM and Nile red staining analysis. Based on these results, the e(I) MMPI can be considered a good candidate for the intra-articular treatment of OA, and the micellar formulation of this peptide in an aqueous buffer can potentially increase the bioavailability and, thus, the efficacy of the MMPIs.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Metaloproteinasa 3 de la Matriz/metabolismo , Osteoartritis de la Rodilla/tratamiento farmacológico , Péptidos/farmacología , Tensoactivos/farmacología , Animales , Bovinos , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estructura Molecular , Osteoartritis de la Rodilla/metabolismo , Péptidos/síntesis química , Péptidos/química , Relación Estructura-Actividad , Tensoactivos/síntesis química , Tensoactivos/química
6.
FEBS J ; 288(14): 4291-4310, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33512780

RESUMEN

Breast cancer constitutes a heterogeneous disease. The expression profiles of estrogen receptors (ERs), as well as the expression patterns of extracellular matrix (ECM) macromolecules, determine its development and progression. Hyaluronan (HA) is an ECM molecule that regulates breast cancer cells' properties in a molecular size-dependent way. Previous studies have shown that 200-kDa HA fragments modulate the functional properties, morphology, and expression of several matrix mediators of the highly metastatic ERα- /ERß+ MDA-MB-231 cells. In order to evaluate the effects of HA fragments (< 10, 30 and 200-kDa) in ERß-suppressed breast cancer cells, the shERß MDA-MB-231 cells were used. These cells are less aggressive when compared with MDA-MB-231 cells. To this end, the functional properties, the morphology, and the expression of the molecules associated with breast cancer cells metastatic potential were studied. Notably, both cell proliferation and invasion were significantly reduced after treatment with 200-kDa HA. Moreover, as assessed by scanning electron microscopy, 200-kDa HA affected cellular morphology, and as assessed by qPCR, upregulated the epithelial marker Ε-cadherin. The expression profiles of ECM mediators, such as HAS2, CD44, and MMP7, were also altered. On the other hand, cellular migration and the expression levels of syndecan-4 (SDC-4) were not significantly affected in contrast to our observations regarding MDA-MB-231 cells. These novel data demonstrate that the molecular size of the HA determines its effects on ERß-suppressed breast cancer cells and that 200-kDa HA exhibits antiproliferative effects on these cells. A deeper understanding of this mechanism may contribute to the development of therapeutic strategies against breast cancer.


Asunto(s)
Neoplasias de la Mama/patología , Matriz Extracelular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ácido Hialurónico/farmacología , Receptores de Estrógenos/metabolismo , Viscosuplementos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Movimiento Celular , Proliferación Celular , Matriz Extracelular/metabolismo , Femenino , Humanos , Receptores de Estrógenos/genética , Células Tumorales Cultivadas
7.
Osteoarthr Cartil Open ; 3(2): 100159, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36474988

RESUMEN

Objective: Osteoarthritis (OA) is a painful degenerative disease of the whole joint structure, including articular cartilage, synovial fluid, and subchondral bone. Hyaluronic acid (HA), an anionic non-sulfated glycosaminoglycan, is commonly used for intra-articular (IA) treatment in OA, while bisphosphonates (BPs) are anti-resorptive drugs that act on the bone. Here, a novel conjugate with a covalent and hydrolysable linker between HA and alendronate (ALD) was designed as an attractive therapeutic strategy for IA drug delivery. Design: The HA-ALD derivative was synthesized and tested in comparison with a simple mixture of HA and ALD for in vitro ALD release, rheological properties, cytotoxicity towards osteoblasts and chondrocytes and in an in vitro efficacy assay of OA inflammatory model on bovine cartilage explants. Results: The structure of HA-ALD was elucidated exhibiting no depolymerization and efficient drug incorporation. The controlled ALD release in vitro was slower compared to the simple mixture of HA and ALD; moreover, the derivative showed calcium-tuned rheological properties. The absence of cytotoxicity towards osteoblasts and chondrocytes was shown for up to 7 days, and the viability of chondrocytes was confirmed by fluorescence microscopy. Finally, a reduction in collagen release and MMP-13 expression was measured in the OA inflammatory model. Conclusion: This new HA-ALD derivative opens the door to a new approach for OA treatment, as it combines viscosupplementation and biological effects of HA with the pharmacological activity of BPs. Prolonged ALD release increased rheological properties and beneficial effect against cartilage degradation make it a promising IA therapy for OA.

8.
Int J Mol Sci ; 21(18)2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32937830

RESUMEN

Tendinopathy is the term used to refer to tendon disorders. Spontaneous adult tendon healing results in scar tissue formation and fibrosis with suboptimal biomechanical properties, often resulting in poor and painful mobility. The biomechanical properties of the tissue are negatively affected. Adult tendons have a limited natural healing capacity, and often respond poorly to current treatments that frequently are focused on exercise, drug delivery, and surgical procedures. Therefore, it is of great importance to identify key molecular and cellular processes involved in the progression of tendinopathies to develop effective therapeutic strategies and drive the tissue toward regeneration. To treat tendon diseases and support tendon regeneration, cell-based therapy as well as tissue engineering approaches are considered options, though none can yet be considered conclusive in their reproduction of a safe and successful long-term solution for full microarchitecture and biomechanical tissue recovery. In vitro differentiation techniques are not yet fully validated. This review aims to compare different available tendon in vitro differentiation strategies to clarify the state of art regarding the differentiation process.


Asunto(s)
Tendinopatía/terapia , Tendones/citología , Ingeniería de Tejidos/métodos , Animales , Diferenciación Celular/fisiología , Humanos , Regeneración/fisiología , Cicatrización de Heridas/fisiología
9.
J Appl Biomater Funct Mater ; 17(3): 2280800019867075, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31476948

RESUMEN

The success of hyaluronic acid (HA)-based dermal fillers, with more than 2 million minimally invasive procedures conducted in 2016 in the US alone, is due to their hygroscopic properties of biocompatibility and reversibility. The type and density of HA cross-linkage, as well as the manufacturing technology, may influence not only the in vivo persistence but also the safety profile of dermal fillers. 1,4-Butanediol diglycidyl ether (BDDE) is the cross-linker used in most market-leading HA fillers; 1,4-butanediol di-(propan-2,3-diolyl) ether (BDPE) is the major impurity obtained from the HA-BDDE cross-linking (HBC) process. In this work, a new process to obtain high purity HBC fillers was developed. A new HPLC-MS method was validated for the quantification of BDPE content in HBC dermal fillers. In vitro cytotoxicity of BDPE was evaluated in fibroblasts (IC50 = 0.48 mg/mL). The viscoelasticity was monitored during the shelf-life of the HBC-10% hydrogel and was correlated with in vitro hyaluronidase resistance and in vivo residence time in a rabbit model. This analysis showed that elasticity is the best parameter to predict the in vivo residence time. Finally, a series of parameters were investigated in certain marketed dermal fillers and were compared with the results of the HBC-10% hydrogel.


Asunto(s)
Rellenos Dérmicos , Ácido Hialurónico , Hidrogeles , Ensayo de Materiales , Animales , Células 3T3 BALB , Cromatografía Líquida de Alta Presión , Rellenos Dérmicos/análisis , Rellenos Dérmicos/química , Rellenos Dérmicos/farmacología , Ácido Hialurónico/análisis , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Hidrogeles/análisis , Hidrogeles/química , Hidrogeles/farmacología , Masculino , Espectrometría de Masas , Ratones , Conejos
10.
Mater Sci Eng C Mater Biol Appl ; 96: 625-634, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30606574

RESUMEN

Hydrogels are an increasingly attractive choice in the fields of regenerative medicine, wound care and tissue engineering as important forms of bio-scaffolds. For many clinical needs, injectable in situ crosslinkable hydrogels are strongly preferred, due to treatment effectiveness and ease of use. In this study, hyaluronic acid (HA), containing side-arms linked to photo-active coumarin moieties, was used for the preparation of wall-to-wall hydrogels. This photocrosslinkable HA, hereafter called HA-TEG-coumarin, produces colourless aqueous solutions that solidify upon near-UV irradiation (at a specific wavelength of 365 nm) via a clean [2 + 2] photocycloaddition reaction, without by-products formation. The crosslinking event, a robust and non-cytotoxic process, does not require catalysts or radical initiators: in the field of hyaluronan photocrosslinking, this innovative feature is significant to ensure the whole biocompatibility and to avoid collateral reactions. Mechanical and rheological tests showed that hyaluronan derivatives became hydrogels after 3-5 min of irradiation, with average values for bulk and surface elastic moduli of about 32 kPa and 193 kPa, respectively. Fluorescence recovery after photobleaching (FRAP) assay showed that the hydrogels are porous and allow a good permeation for nutrients and growth factors. Cell metabolism and proliferation assays revealed that hydrogel-encapsulated fibroblasts maintained their viability and that HA-TEG-coumarin sustained the proliferation of non-adherent myoblasts. For all of these reasons and thanks to a safe free-radical approach, this novel hyaluronan coumarin derivative could be a good candidate for tissue engineering and regenerative medicine applications.


Asunto(s)
Cumarinas/química , Reactivos de Enlaces Cruzados/química , Ácido Hialurónico/química , Hidrogeles/química , Procesos Fotoquímicos , Ingeniería de Tejidos , Rayos Ultravioleta , Animales , Línea Celular , Humanos , Ensayo de Materiales , Ratones
11.
Matrix Biol Plus ; 3: 100008, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33543007

RESUMEN

High levels of hyaluronan (ΗΑ), a major extracellular matrix (ECM) glycosaminoglycan, have been correlated with poor clinical outcome in several malignancies, including breast cancer. The high and low molecular weight HΑ forms exert diverse biological functions. Depending on their molecular size, ΗΑ forms either promote or attenuate signaling cascades that regulate cancer progression. In order to evaluate the effects of different ΗΑ forms on breast cancer cells' behavior, ΗΑ fragments of defined molecular size were synthesized. Breast cancer cells of different estrogen receptor (ER) status - the low metastatic, ERα-positive MCF-7 epithelial cells and the highly aggressive, ERß-positive MDA-MB-231 mesenchymal cells - were evaluated following treatment with HA fragments. Scanning electron microscopy revealed that HA fragments critically affect the morphology of breast cancer cells in a molecular-size dependent mode. Moreover, the ΗΑ fragments affect cell functional properties, the expression of major ECM mediators and epithelial-to-mesenchymal transition (ΕΜΤ) markers. Notably, treatment with 200 kDa ΗΑ increased the expression levels of the epithelial marker Ε-cadherin and reduced the expression levels of HA synthase 2 and mesenchymal markers, like fibronectin and snail2/slug. These novel data suggest that the effects of HA in breast cancer cells depend on the molecular size and the ER status. An in-depth understanding on the mechanistic basis of these effects may contribute on the development of novel therapeutic strategies for the pharmacological targeting of aggressive breast cancer.

12.
Biofouling ; 34(7): 719-730, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30270674

RESUMEN

A series of new hyaluronan derivatives was synthesized and tested as an antibiotic release system by antibacterial and osseointegration assays. Specifically, partially sulphated hyaluronic acid (sHA) was functionalized with dopamine (DA). The DA moiety guarantees good performance as a binding agent for coating a titanium alloy surface; furthermore, the negatively charged sHA has bone regenerative effects and a high binding affinity for positively charged antibiotics. A sHA scaffold with a defined degree of sulphation (DS =2) was selected as a good compromise between a high negative charge density and poor heparin-like anticoagulant activity, while the degree of DA derivatization (17.1%mol) was chosen based on the absence of cytotoxic activity and the promotion of osteoblast proliferation. The titanium alloy coating was investigated indirectly using a fluorescent probe and directly by environmental scanning electron microscope (ESEM) analysis. Long-duration antibiotic release was demonstrated in vitro, and antibacterial efficacy against a Staphylococcus aureus culture was shown.


Asunto(s)
Antibacterianos/administración & dosificación , Materiales Biocompatibles Revestidos/farmacología , Ácido Hialurónico/análogos & derivados , Oseointegración/efectos de los fármacos , Infecciones Relacionadas con Prótesis/prevención & control , Infecciones Estafilocócicas/prevención & control , Aleaciones , Biopelículas , Dopamina , Pruebas de Sensibilidad Microbiana , Prótesis e Implantes , Staphylococcus aureus , Sulfatos/farmacología , Propiedades de Superficie , Titanio
13.
J Control Release ; 187: 30-8, 2014 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-24837189

RESUMEN

Osteoarthritis (OA) is characterized by chronic degeneration of joints, involving mainly the articular cartilage and the underlying bone, and severely impairing the quality of life of the patient. Although with limited efficacy, currently available pharmacological treatments for OA aim to control pain and to retard disease progression. Salmon calcitonin (sCT) is a drug which has been shown to have therapeutic effects in experimental arthritis by inhibiting both bone turnover and cartilage degradation and reducing the activities of matrix metalloproteinases (MMP). High molecular weight hyaluronic acid (HA) is used as a lubricant in OA therapy, and, interestingly, HA polymers may normalize the levels of MMP-1, -3 and -13. We demonstrated that sCT rapidly clears from the knee joint of rat animal model, after intra-articular (i.a.) administration, and it induces systemic effects. Here, sCT was conjugated to HA (200kDa) with the aim of prolonging the residence time of the polypeptide in the joint space by reducing its clearance. An aldehyde derivative of HA was used for N-terminal site-selective coupling of sCT. The activity of sCT was preserved, both in vitro and in vivo, after its conjugation and the i.a. injection of HA-sCT did not trigger any systemic effects in rats. The efficacy of HA-sCT treatment was tested in a rabbit OA model and clear chondro-protective effect was proven by macro- and microscopic assessments and histological findings. Our results indicate that HAylation of sCT increases the size of the polypeptide in a stable covalent manner and delays its passage into the blood stream. We conclude that HA conjugation prolongs the anti-catabolic effects of sCT in joint tissues, including the synovial membrane and cartilage.


Asunto(s)
Antiinflamatorios/administración & dosificación , Artritis Experimental/tratamiento farmacológico , Calcitonina/administración & dosificación , Ácido Hialurónico/química , Osteoartritis/tratamiento farmacológico , Animales , Antiinflamatorios/química , Artritis Experimental/metabolismo , Calcitonina/química , Calcio/sangre , Cartílago Articular/patología , Línea Celular , AMP Cíclico/metabolismo , Articulación de la Rodilla/metabolismo , Masculino , Conejos , Ratas Sprague-Dawley , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...