Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 1728, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35365602

RESUMEN

Deep Learning (DL) has recently enabled unprecedented advances in one of the grand challenges in computational biology: the half-century-old problem of protein structure prediction. In this paper we discuss recent advances, limitations, and future perspectives of DL on five broad areas: protein structure prediction, protein function prediction, genome engineering, systems biology and data integration, and phylogenetic inference. We discuss each application area and cover the main bottlenecks of DL approaches, such as training data, problem scope, and the ability to leverage existing DL architectures in new contexts. To conclude, we provide a summary of the subject-specific and general challenges for DL across the biosciences.


Asunto(s)
Aprendizaje Profundo , Biología Computacional , Filogenia , Proteínas , Biología de Sistemas
2.
Comput Med Imaging Graph ; 97: 102052, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35299096

RESUMEN

Cervical cancer is a public health emergency in low- and middle-income countries where resource limitations hamper standard-of-care prevention strategies. The high-resolution endomicroscope (HRME) is a low-cost, point-of-care device with which care providers can image the nuclear morphology of cervical lesions. Here, we propose a deep learning framework to diagnose cervical intraepithelial neoplasia grade 2 or more severe from HRME images. The proposed multi-task convolutional neural network uses nuclear segmentation to learn a diagnostically relevant representation. Nuclear segmentation was trained via proxy labels to circumvent the need for expensive, manually annotated nuclear masks. A dataset of images from over 1600 patients was used to train, validate, and test our algorithm; data from 20% of patients were reserved for testing. An external evaluation set with images from 508 patients was used to further validate our findings. The proposed method consistently outperformed other state-of-the art architectures achieving a test per patient area under the receiver operating characteristic curve (AUC-ROC) of 0.87. Performance was comparable to expert colposcopy with a test sensitivity and specificity of 0.94 (p = 0.3) and 0.58 (p = 1.0), respectively. Patients with recurrent human papillomavirus (HPV) infections are at a higher risk of developing cervical cancer. Thus, we sought to incorporate HPV DNA test results as a feature to inform prediction. We found that incorporating patient HPV status improved test specificity to 0.71 at a sensitivity of 0.94.


Asunto(s)
Infecciones por Papillomavirus , Displasia del Cuello del Útero , Neoplasias del Cuello Uterino , Colposcopía/métodos , Detección Precoz del Cáncer/métodos , Femenino , Humanos , Redes Neurales de la Computación , Infecciones por Papillomavirus/diagnóstico por imagen , Embarazo , Sensibilidad y Especificidad , Neoplasias del Cuello Uterino/diagnóstico por imagen , Neoplasias del Cuello Uterino/patología , Displasia del Cuello del Útero/diagnóstico por imagen , Displasia del Cuello del Útero/patología
3.
Nucleic Acids Res ; 48(10): 5217-5234, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32338745

RESUMEN

As computational biologists continue to be inundated by ever increasing amounts of metagenomic data, the need for data analysis approaches that keep up with the pace of sequence archives has remained a challenge. In recent years, the accelerated pace of genomic data availability has been accompanied by the application of a wide array of highly efficient approaches from other fields to the field of metagenomics. For instance, sketching algorithms such as MinHash have seen a rapid and widespread adoption. These techniques handle increasingly large datasets with minimal sacrifices in quality for tasks such as sequence similarity calculations. Here, we briefly review the fundamentals of the most impactful probabilistic and signal processing algorithms. We also highlight more recent advances to augment previous reviews in these areas that have taken a broader approach. We then explore the application of these techniques to metagenomics, discuss their pros and cons, and speculate on their future directions.


Asunto(s)
Algoritmos , Metagenómica/métodos , Probabilidad , Procesamiento de Señales Asistido por Computador , Humanos , Metagenoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...