Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Stem Cells Dev ; 31(17-18): 507-520, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35592997

RESUMEN

During embryonic development, the olfactory sensory neurons (OSNs) and the gonadotropic-releasing hormone neurons (GNRHNs) migrate from the early nasal cavity, known as the olfactory placode, to the brain. Defects in the development of OSNs and GNRHNs result in neurodevelopmental disorders such as anosmia and congenital hypogonadotropic hypogonadism, respectively. Treatments do not restore the defective neurons in these disorders, and as a result, patients have a diminished sense of smell or a gonadotropin hormone deficiency. Human pluripotent stem cells (hPSCs) can produce any cell type in the body; therefore, they are an invaluable tool for cell replacement therapies. Transplantation of olfactory placode progenitors, derived from hPSCs, is a promising therapeutic to replace OSNs and GNRHNs and restore tissue function. Protocols to generate olfactory placode progenitors are limited, and thus, we describe, in this study, a novel in vitro model for olfactory placode differentiation in hPSCs, which is capable of producing both OSNs and GNRHNs. Our study investigates the major developmental signaling factors that recapitulate the embryonic development of the olfactory tissue. We demonstrate that induction of olfactory placode in hPSCs requires bone morphogenetic protein inhibition, wingless/integrated protein inhibition, retinoic acid inhibition, transforming growth factor alpha activation, and fibroblast growth factor 8 activation. We further show that the protocol transitions hPSCs through the anterior pan-placode ectoderm and neural ectoderm regions in early development while preventing neural crest and non-neural ectoderm regions. Finally, we demonstrate production of OSNs and GNRHNs by day 30 of differentiation. Our study is the first to report on OSN differentiation in hPSCs.


Asunto(s)
Ectodermo , Células Madre Pluripotentes , Hormonas/metabolismo , Humanos , Cresta Neural , Neuronas/metabolismo
2.
Stem Cells ; 36(6): 822-833, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29396901

RESUMEN

The canonical Wnt/ß-catenin pathway is crucial for early embryonic patterning, tissue homeostasis, and regeneration. While canonical Wnt/ß-catenin stimulation has been used extensively to modulate pluripotency and differentiation of pluripotent stem cells (PSCs), the mechanism of these two seemingly opposing roles has not been fully characterized and is currently largely attributed to activation of nuclear Wnt target genes. Here, we show that low levels of Wnt stimulation via ectopic expression of Wnt1 or administration of glycogen synthase kinase-3 inhibitor CHIR99021 significantly increases PSC differentiation into neurons, cardiomyocytes and early endodermal intermediates. Our data indicate that enhanced differentiation outcomes are not mediated through activation of traditional Wnt target genes but by ß-catenin's secondary role as a binding partner of membrane bound cadherins ultimately leading to the activation of developmental genes. In summary, fine-tuning of Wnt signaling to subthreshold levels for detectable nuclear ß-catenin function appears to act as a switch to enhance differentiation of PSCs into multiple lineages. Our observations highlight a mechanism by which Wnt/ß-catenin signaling can achieve dosage dependent dual roles in regulating self-renewal and differentiation. Stem Cells 2018;36:822-833.


Asunto(s)
Células Madre Pluripotentes/metabolismo , Vía de Señalización Wnt/genética , beta Catenina/genética , Animales , Diferenciación Celular , Humanos , Ratones , Transducción de Señal
3.
Methods Mol Biol ; 1307: 191-203, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-24297315

RESUMEN

Flow Cytometry-Sorting (FCM-Sorting) is a technique commonly used to identify and isolate specific types of cells from a heterogeneous population of live cells. Here we describe a multicolor flow cytometry technique that uses five distinct cell surface antigens to isolate four live populations with different surface antigen profiles. These profiles were used to help distinguishing between neural and nonneural (the lens) ectoderm derivatives within a highly heterogenous population of differentiating human embryonic stem cells (hESC).


Asunto(s)
Diferenciación Celular , Separación Celular/métodos , Citometría de Flujo/métodos , Células Madre Embrionarias Humanas/citología , Colorantes Fluorescentes/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Humanos
4.
Curr Top Dev Biol ; 111: 497-514, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25662270

RESUMEN

Due to their intrinsic differentiation potential, human pluripotent stem cells (hPSCs) hold remarkable promise for their use in cell-based therapies as well as an in vitro model for early human embryogenesis and for modeling disease. During the development of the human embryo, transient structures such as the neural crest (NC) and the cranial placodes (CPs) are specified in the first 3-4 weeks of gestation. Because of this early occurrence and a scarce availability of embryos for research purposes, these transient structures remain largely unexplored in humans. Hence, investigators are now exploiting in vitro differentiation of hPSC to unveil these early events and to generate NC and CP cells in vitro. Derivatives of the NC and CPs will contribute to the formation of very important organs, including most of the peripheral nervous system (NC) and the sensory organs of the head (CP). There are many diseases and conditions that affect NC and CP derivatives, thus a better knowledge of how these structures specialize, and the derivation of functional NC and CP cells for therapeutic applications will have an impact on the understanding and treatment of these disorders. Here, we discuss the current state of the art in directing hPSCs into NC or CP cells, which in spite of their importance is still in its infancy.


Asunto(s)
Diferenciación Celular/fisiología , Ectodermo/citología , Inducción Embrionaria/fisiología , Cabeza/embriología , Técnicas In Vitro/métodos , Cresta Neural/citología , Células Madre Pluripotentes/fisiología , Técnicas de Cultivo de Célula/métodos , Ectodermo/embriología , Factores de Crecimiento de Fibroblastos/metabolismo , Citometría de Flujo/métodos , Humanos , Cresta Neural/embriología
5.
Stem Cells Dev ; 23 Suppl 1: 83-7, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25457970

RESUMEN

Humans and nonhuman primates (NHPs) are similar in size, behavior, physiology, biochemistry, structure and function of organs, and complexity of the immune system. Research on NHPs generates complementary data that bridge translational research from small animal models to humans. NHP models of human disease offer unique opportunities to develop stem cell-based therapeutic interventions that directly address relevant and challenging translational aspects of cell transplantation therapy. These include the use of autologous induced pluripotent stem cell-derived cellular products, issues related to the immune response in autologous and allogeneic setting, pros and cons of delivery techniques in a clinical setting, as well as the safety and efficacy of candidate cell lines. The NHP model allows the assessment of complex physiological, biochemical, behavioral, and imaging end points, with direct relevance to human conditions. At the same time, the value of using primates in scientific research must be carefully evaluated and timed due to expense and the necessity for specialized equipment and highly trained personnel. Often it is more efficient and useful to perform initial proof-of-concept studies for new therapeutics in rodents and/or other species before the pivotal studies in NHPs that may eventually lead to first-in-human trials. In this report, we present how the Southwest National Primate Research Center, one of seven NIH-funded National Primate Research Centers, may help the global community in translating promising technologies to the clinical arena.


Asunto(s)
Trasplante de Células/métodos , Modelos Animales , Medicina Regenerativa/tendencias , Investigación Biomédica Traslacional/tendencias , Animales , Financiación Gubernamental , Humanos , Células Madre Pluripotentes Inducidas/citología , Primates , Desarrollo de Programa , Investigación con Células Madre , Texas , Estados Unidos
6.
Stem Cell Reports ; 1(6): 620-31, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24371814

RESUMEN

Human pluripotent stem cells (hPSCs) constitute a promising resource for use in cell-based therapies and a valuable in vitro model for studying early human development and disease. Despite significant advancements in the derivation of specific fates from hPSCs, the generation of skeletal muscle remains challenging and is mostly dependent on transgene expression. Here, we describe a method based on the use of a small-molecule GSK3ß inhibitor to derive skeletal muscle from several hPSC lines. We show that early GSK3ß inhibition is sufficient to create the conditions necessary for highly effective derivation of muscle cells. Moreover, we developed a strategy for stringent fluorescence-activated cell sorting-based purification of emerging PAX3+/PAX7+ muscle precursors that are able to differentiate in postsort cultures into mature myocytes. This transgene-free, efficient protocol provides an essential tool for producing myogenic cells for in vivo preclinical studies, in vitro screenings, and disease modeling.


Asunto(s)
Técnicas de Cultivo de Célula , Diferenciación Celular , Músculo Esquelético/citología , Factor de Transcripción PAX7/metabolismo , Factores de Transcripción Paired Box/metabolismo , Células Madre Pluripotentes/citología , Citometría de Flujo , Perfilación de la Expresión Génica , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3 beta , Humanos , Músculo Esquelético/metabolismo , Factor de Transcripción PAX3 , Células Madre Pluripotentes/efectos de los fármacos , Células Madre Pluripotentes/metabolismo , ARN Mensajero/metabolismo
7.
Stem Cells Transl Med ; 2(2): 94-106, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23341438

RESUMEN

Human embryonic stem cells (hESCs) provide a powerful tool to investigate early events occurring during human embryonic development. In the present study, we induced differentiation of hESCs in conditions that allowed formation of neural and non-neural ectoderm and to a lesser extent mesoderm. These tissues are required for correct specification of the neural plate border, an early embryonic transient structure from which neural crest cells (NCs) and cranial placodes (CPs) originate. Although isolation of CP derivatives from hESCs has not been previously reported, isolation of hESC-derived NC-like cells has been already described. We performed a more detailed analysis of fluorescence-activated cell sorting (FACS)-purified cell populations using the surface antigens previously used to select hESC-derived NC-like cells, p75 and HNK-1, and uncovered their heterogeneous nature. In addition to the NC component, we identified a neural component within these populations using known surface markers, such as CD15 and FORSE1. We have further exploited this information to facilitate the isolation and purification by FACS of a CP derivative, the lens, from differentiating hESCs. Two surface markers expressed on lens cells, c-Met/HGFR and CD44, were used for positive selection of multiple populations with a simultaneous subtraction of the neural/NC component mediated by p75, HNK-1, and CD15. In particular, the c-Met/HGFR allowed early isolation of proliferative lens epithelium-like cells capable of forming lentoid bodies. Isolation of hESC-derived lens cells represents an important step toward the understanding of human lens development and regeneration and the devising of future therapeutic applications.


Asunto(s)
Células Madre Embrionarias/citología , Células Epiteliales/citología , Cristalino/citología , Placa Neural/citología , Células-Madre Neurales/citología , Animales , Antígenos CD57/genética , Antígenos CD57/metabolismo , Diferenciación Celular/fisiología , Línea Celular , Separación Celular/métodos , Técnicas de Cocultivo , Medios de Cultivo/farmacología , Ectodermo/citología , Células Madre Embrionarias/fisiología , Fibroblastos/citología , Citometría de Flujo/métodos , Humanos , Mesodermo/citología , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Cresta Neural/citología , Neuronas/citología , Reacción en Cadena de la Polimerasa , Receptores de Factor de Crecimiento Nervioso/genética , Receptores de Factor de Crecimiento Nervioso/metabolismo , Transcriptoma
8.
Stem Cells Dev ; 19(5): 745-51, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-19422288

RESUMEN

Recent findings emphasized a critical role for the Wnt signaling pathway during the early steps of embryogenesis, including the development of the hematopoietic system and cardiac development. To date, the role of Wnt in promoting or inhibiting development of both tissues was discussed controversially, dependent on species and time point of expression. Differentiation of embryonic stem cells (ESC) recapitulates early stages of mammalian development. In the present study, we generated murine ESC lines overexpressing Wnt1 (Wnt1 ES). When induced to differentiate toward the cardiomyocytic lineage, Wnt1 ES showed a significant increased ability to generate cardiomyocytes when compared with a control ESC (control ES) line. In addition, Wnt1 ES cells were unable to form hematopoietic cells, whereas development of endothelial cells, a cell type closely associated with blood during embryogenesis, was comparable to control ES. Finally, cardiac differentiation was markedly decreased by the addition of the Wnt antagonist Dkk-1 to the culture medium. These findings suggest that Wnt1 may regulate differentiation of immature mesodermal cells in a tissue-specific manner.


Asunto(s)
Células Madre Embrionarias/citología , Hematopoyesis , Desarrollo de Músculos , Miocitos Cardíacos/citología , Proteína Wnt1/biosíntesis , Proteína Wnt1/fisiología , Animales , Diferenciación Celular , Línea Celular , Linaje de la Célula , Ratones , Proteína Wnt1/genética
9.
Curr Protoc Stem Cell Biol ; Chapter 1: Unit 1F.8, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19536758

RESUMEN

This unit describes a protocol for the derivation of multipotent mesenchymal precursors from human embryonic stem cells (hESCs). hESCs cultured at low density in the presence of a chemically defined serum-free medium are induced to adopt an endomesodermal fate and later a mesenchymal phenotype. FACS sorting for the surface antigen CD73 is used to purify mesenchymal precursors able to differentiate into fat, bone, cartilage, and skeletal muscle cells. Enrichment in mesenchymal precursors with a myogenic potential is achieved via an additional FACS sorting for the embryonic skeletal muscle surface marker N-CAM.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Mesodermo/fisiología , Mioblastos Esqueléticos/citología , Diferenciación Celular/fisiología , Células Madre Embrionarias/citología , Endodermo/metabolismo , Humanos , Hígado/metabolismo , Mesodermo/metabolismo , Modelos Biológicos , Páncreas/metabolismo , Transducción de Señal
10.
Nat Biotechnol ; 25(12): 1468-75, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18037878

RESUMEN

Vertebrate neural crest development depends on pluripotent, migratory precursor cells. Although avian and murine neural crest stem (NCS) cells have been identified, the isolation of human NCS cells has remained elusive. Here we report the derivation of NCS cells from human embryonic stem cells at the neural rosette stage. We show that NCS cells plated at clonal density give rise to multiple neural crest lineages. The human NCS cells can be propagated in vitro and directed toward peripheral nervous system lineages (peripheral neurons, Schwann cells) and mesenchymal lineages (smooth muscle, adipogenic, osteogenic and chondrogenic cells). Transplantation of human NCS cells into the developing chick embryo and adult mouse hosts demonstrates survival, migration and differentiation compatible with neural crest identity. The availability of unlimited numbers of human NCS cells offers new opportunities for studies of neural crest development and for efforts to model and treat neural crest-related disorders.


Asunto(s)
Células Madre Embrionarias/citología , Células Madre Embrionarias/fisiología , Cresta Neural/citología , Cresta Neural/fisiología , Neuronas/citología , Neuronas/fisiología , Ingeniería de Tejidos/métodos , Animales , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Movimiento Celular , Supervivencia Celular , Células Cultivadas , Embrión de Pollo , Humanos , Ratones
11.
Nat Med ; 13(5): 642-8, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17417652

RESUMEN

Human embryonic stem cells (hESCs) are a promising source for cell therapy in degenerative diseases. A key step in establishing the medical potential of hESCs is the development of techniques for the conversion of hESCs into tissue-restricted precursors suitable for transplantation. We recently described the derivation of multipotent mesenchymal precursors from hESCs. Nevertheless, our previous study was limited by the requirement for mouse feeders and the lack of in vivo data. Here we report a stroma-free induction system for deriving mesenchymal precursors. Selective culture conditions and fluorescence-activated cell sorting (FACS)-mediated purification yielded multipotent mesenchymal precursors and skeletal myoblasts. Skeletal muscle cells undergo in vitro maturation resulting in myotube formation and spontaneous twitching. We found that hESC-derived skeletal myoblasts were viable after transplantation into the tibialis anterior muscle of SCID/Beige mice, as assessed by bioluminescence imaging. Lack of teratoma formation and evidence of long-term myoblast engraftment suggests considerable potential for future therapeutic applications.


Asunto(s)
Células Madre Embrionarias/citología , Mioblastos/citología , Mioblastos/trasplante , Trasplante de Células Madre/métodos , Animales , Técnicas de Cultivo de Célula/métodos , Separación Celular/métodos , Humanos , Mesodermo/citología , Ratones , Enfermedades Neurodegenerativas/terapia , Células del Estroma/citología
12.
Methods Enzymol ; 418: 194-208, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17141037

RESUMEN

Human embryonic stem cells (hESC) provide a potentially unlimited source of specialized cell types for regenerative medicine. Nonetheless, one of the key requirements used to fulfill this potential is the ability to direct the differentiation of hESC to selective fates in vitro. Studies have reported the development of culture strategies to derive multipotent mesenchymal precursors from hESCs in vitro. This chapter reviews the techniques that allow the selective derivation of such precursors and their differentiation toward various mesenchymal cell types. It also discusses current limitations and future perspectives on the use of hESC-derived mesenchymal tissues.


Asunto(s)
Mesodermo/citología , Mesodermo/fisiología , Adulto , Animales , Células de la Médula Ósea/citología , Diferenciación Celular , Línea Celular , Células Madre Embrionarias/citología , Citometría de Flujo , Humanos , Ratones , Músculo Esquelético/citología , Células Madre/citología , Células Madre/fisiología
13.
PLoS Med ; 2(6): e161, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15971941

RESUMEN

BACKGROUND: Human embryonic stem cells provide access to the earliest stages of human development and may serve as a source of specialized cells for regenerative medicine. Thus, it becomes crucial to develop protocols for the directed differentiation of embryonic stem cells into tissue-restricted precursors. METHODS AND FINDINGS: Here, we present culture conditions for the derivation of unlimited numbers of pure mesenchymal precursors from human embryonic stem cells and demonstrate multilineage differentiation into fat, cartilage, bone, and skeletal muscle cells. CONCLUSION: Our findings will help to elucidate the mechanism of mesoderm specification during embryonic stem cell differentiation and provide a platform to efficiently generate specialized human mesenchymal cell types for future clinical applications.


Asunto(s)
Diferenciación Celular , Separación Celular/métodos , Células Madre Embrionarias , Células Madre Mesenquimatosas/citología , Células Madre Multipotentes/citología , Adipocitos/citología , Adipocitos/metabolismo , Agrecanos/genética , Agrecanos/metabolismo , Animales , Línea Celular , Condrocitos/citología , Condrocitos/metabolismo , Técnicas de Cocultivo , Regulación de la Expresión Génica , Humanos , Células Madre Mesenquimatosas/metabolismo , Ratones , Células Madre Multipotentes/metabolismo , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Proteína MioD/genética , Proteína MioD/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , PPAR gamma/genética , PPAR gamma/metabolismo , ARN Mensajero/metabolismo , Células del Estroma
14.
Proc Natl Acad Sci U S A ; 101(34): 12543-8, 2004 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-15310843

RESUMEN

Human embryonic stem (hES) cells are defined by their extensive self-renewal capacity and their potential to differentiate into any cell type of the human body. The challenge in using hES cells for developmental biology and regenerative medicine has been to direct the wide differentiation potential toward the derivation of a specific cell fate. Within the nervous system, hES cells have been shown to differentiate in vitro into neural progenitor cells, neurons, and astrocytes. However, to our knowledge, the selective derivation of any given neuron subtype has not yet been demonstrated. Here, we describe conditions to direct hES cells into neurons of midbrain dopaminergic identity. Neuroectodermal differentiation was triggered on stromal feeder cells followed by regional specification by means of the sequential application of defined patterning molecules that direct in vivo midbrain development. Progression toward a midbrain dopamine (DA) neuron fate was monitored by the sequential expression of key transcription factors, including Pax2, Pax5, and engrailed-1 (En1), measurements of DA release, the presence of tetrodotoxin-sensitive action potentials, and the electron-microscopic visualization of tyrosinehydroxylase-positive synaptic terminals. High-yield DA neuron derivation was confirmed from three independent hES and two monkey embryonic stem cell lines. The availability of unlimited numbers of midbrain DA neurons is a first step toward exploring the potential of hES cells in preclinical models of Parkinson's disease. This experimental system also provides a powerful tool to probe the molecular mechanisms that control the development and function of human midbrain DA neurons.


Asunto(s)
Diferenciación Celular/fisiología , Dopamina/metabolismo , Mesencéfalo/embriología , Neuronas/fisiología , Células Madre/fisiología , Animales , Técnicas de Cultivo de Célula/métodos , Línea Celular , Embrión de Mamíferos/anatomía & histología , Humanos , Mesencéfalo/citología , Ratones , Neuronas/ultraestructura , Fenotipo , Primates , Células Madre/citología , Células del Estroma/citología , Células del Estroma/metabolismo
15.
Nat Biotechnol ; 21(10): 1200-7, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-14502203

RESUMEN

Existing protocols for the neural differentiation of mouse embryonic stem (ES) cells require extended in vitro culture, yield variable differentiation results or are limited to the generation of selected neural subtypes. Here we provide a set of coculture conditions that allows rapid and efficient derivation of most central nervous system phenotypes. The fate of both fertilization- and nuclear transfer-derived ES (ntES) cells was directed selectively into neural stem cells, astrocytes, oligodendrocytes or neurons. Specific differentiation into gamma-aminobutyric acid (GABA), dopamine, serotonin or motor neurons was achieved by defining conditions to induce forebrain, midbrain, hindbrain and spinal cord identity. Neuronal function of ES cell-derived dopaminergic neurons was shown in vitro by electron microscopy, measurement of neurotransmitter release and intracellular recording. Furthermore, transplantation of ES and ntES cell-derived dopaminergic neurons corrected the phenotype of a mouse model of Parkinson disease, demonstrating an in vivo application of therapeutic cloning in neural disease.


Asunto(s)
Técnicas de Cocultivo/métodos , Neuronas/fisiología , Neuronas/ultraestructura , Técnicas de Transferencia Nuclear , Trastornos Parkinsonianos/cirugía , Trasplante de Células Madre/métodos , Células Madre/fisiología , Células Madre/ultraestructura , Animales , Diferenciación Celular/fisiología , Fertilización , Masculino , Ratones , Neuronas/clasificación , Trastornos Parkinsonianos/patología , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...