Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Lett ; 27(4): e14413, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38584579

RESUMEN

Natural systems are built from multiple interconnected units, making their dynamics, functioning and fragility notoriously hard to predict. A fragility scenario of particular relevance concerns so-called regime shifts: abrupt transitions from healthy to degraded ecosystem states. An explanation for these shifts is that they arise as transitions between alternative stable states, a process that is well-understood in few-species models. However, how multistability upscales with system complexity remains a debated question. Here, we identify that four different multistability regimes generically emerge in models of species-rich communities and other archetypical complex biological systems assuming random interactions. Across the studied models, each regime consistently emerges under a specific interaction scheme and leaves a distinct set of fingerprints in terms of the number of observed states, their species richness and their response to perturbations. Our results help clarify the conditions and types of multistability that can be expected to occur in complex ecological communities.


Asunto(s)
Ecosistema , Modelos Biológicos , Biota
2.
Ecol Lett ; 27(1): e14358, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38288867

RESUMEN

Beyond abiotic conditions, do population dynamics mostly depend on a species' direct predators, preys and conspecifics? Or can indirect feedback that ripples across the whole community be equally important? Determining where ecological communities sit on the spectrum between these two characterizations requires a metric able to capture the difference between them. Here we show that the spectral radius of a community's interaction matrix provides such a metric, thus a measure of ecological collectivity, which is accessible from imperfect knowledge of biotic interactions and related to observable signatures. This measure of collectivity integrates existing approaches to complexity, interaction structure and indirect interactions. Our work thus provides an original perspective on the question of to what degree communities are more than loose collections of species or simple interaction motifs and explains when pragmatic reductionist approaches ought to suffice or fail when applied to ecological communities.


Asunto(s)
Biota , Modelos Biológicos , Dinámica Poblacional , Ecosistema
3.
Science ; 378(6615): 85-89, 2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-36201585

RESUMEN

From tropical forests to gut microbiomes, ecological communities host notably high numbers of coexisting species. Beyond high biodiversity, communities exhibit a range of complex dynamics that are difficult to explain under a unified framework. Using bacterial microcosms, we performed a direct test of theory predicting that simple community-level features dictate emergent behaviors of communities. As either the number of species or the strength of interactions increases, we show that microbial ecosystems transition between three distinct dynamical phases, from a stable equilibrium in which all species coexist to partial coexistence to emergence of persistent fluctuations in species abundances, in the order predicted by theory. Under fixed conditions, high biodiversity and fluctuations reinforce each other. Our results demonstrate predictable emergent patterns of diversity and dynamics in ecological communities.


Asunto(s)
Bacterias , Biodiversidad , Bosques , Microbiota , Bacterias/genética
4.
Biol Rev Camb Philos Soc ; 96(5): 2333-2354, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34080283

RESUMEN

Biological insurance theory predicts that, in a variable environment, aggregate ecosystem properties will vary less in more diverse communities because declines in the performance or abundance of some species or phenotypes will be offset, at least partly, by smoother declines or increases in others. During the past two decades, ecology has accumulated strong evidence for the stabilising effect of biodiversity on ecosystem functioning. As biological insurance is reaching the stage of a mature theory, it is critical to revisit and clarify its conceptual foundations to guide future developments, applications and measurements. In this review, we first clarify the connections between the insurance and portfolio concepts that have been used in ecology and the economic concepts that inspired them. Doing so points to gaps and mismatches between ecology and economics that could be filled profitably by new theoretical developments and new management applications. Second, we discuss some fundamental issues in biological insurance theory that have remained unnoticed so far and that emerge from some of its recent applications. In particular, we draw a clear distinction between the two effects embedded in biological insurance theory, i.e. the effects of biodiversity on the mean and variability of ecosystem properties. This distinction allows explicit consideration of trade-offs between the mean and stability of ecosystem processes and services. We also review applications of biological insurance theory in ecosystem management. Finally, we provide a synthetic conceptual framework that unifies the various approaches across disciplines, and we suggest new ways in which biological insurance theory could be extended to address new issues in ecology and ecosystem management. Exciting future challenges include linking the effects of biodiversity on ecosystem functioning and stability, incorporating multiple functions and feedbacks, developing new approaches to partition biodiversity effects across scales, extending biological insurance theory to complex interaction networks, and developing new applications to biodiversity and ecosystem management.


Asunto(s)
Ecosistema , Seguro , Biodiversidad , Ecología
5.
Am Nat ; 197(6): E188-E203, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33989141

RESUMEN

AbstractIn a world where natural habitats are ever more fragmented, the dynamics of metacommunities are essential to properly understand species responses to perturbations. If species' populations fluctuate asynchronously, the risk of their simultaneous extinction is low, thus reducing the species' regional extinction risk. However, identifying synchronizing or desynchronizing mechanisms in systems containing several species and when perturbations affect multiple species is challenging. We propose a metacommunity model consisting of two food chains connected by dispersal to study the transmission of small perturbations affecting populations in the vicinity of an equilibrium. In spite of the complex responses produced by such a system, two elements enable us to understand the key processes that rule the synchrony between populations: (1) knowing which species have the strongest response to perturbations and (2) the relative importance of dispersal processes compared with local dynamics for each species. We show that perturbing a species in one patch can lead to asynchrony between patches if the perturbed species is not the most affected by dispersal. The synchrony patterns of rare species are the most sensitive to the relative strength of dispersal to demographic processes, thus making biomass distribution critical to understanding the response of trophic metacommunities to perturbations. We further partition the effect of each perturbation on species synchrony when perturbations affect multiple trophic levels. Our approach allows disentangling and predicting the responses of simple trophic metacommunities to perturbations, thus providing a theoretical foundation for future studies considering more complex spatial ecological systems.


Asunto(s)
Ecosistema , Cadena Alimentaria , Dinámica Poblacional , Biomasa , Extinción Biológica
6.
Ecol Lett ; 24(3): 464-476, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33314592

RESUMEN

The biomass distribution across trophic levels (biomass pyramid) and cascading responses to perturbations (trophic cascades) are archetypal representatives of the interconnected set of static and dynamical properties of food chains. A vast literature has explored their respective ecological drivers, sometimes generating correlations between them. Here we instead reveal a fundamental connection: both pyramids and cascades reflect the dynamical sensitivity of the food chain to changes in species intrinsic rates. We deduce a direct relationship between cascades and pyramids, modulated by what we call trophic dissipation - a synthetic concept that encodes the contribution of top-down propagation of consumer losses in the biomass pyramid. Predictable across-ecosystem patterns emerge when systems are in similar regimes of trophic dissipation. Data from 31 aquatic mesocosm experiments demonstrate how our approach can reveal the causal mechanisms linking trophic cascades and biomass distributions, thus providing a road map to deduce reliable predictions from empirical patterns.


Asunto(s)
Ecosistema , Cadena Alimentaria , Biomasa
7.
Glob Chang Biol ; 27(2): 257-269, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33084162

RESUMEN

Temperature has numerous effects on the structure and dynamics of ecological communities. Yet, there is no general trend or consensus on the magnitude and directions of these effects. To fill this gap, we propose a mechanistic framework based on key biological rates that predicts how temperature influences biomass distribution and trophic control in food webs. We show that these predictions arise from thermal mismatches between biological rates and across trophic levels. We couple our theory with experimental data for a wide range of species and find that warming should lead to top-heavier terrestrial food chains and stronger top-down control in aquatic environments. We then derive predictions for the effects of temperature on herbivory and validate them with data on stream grazers. Our study provides a mechanistic explanation of thermal effects on consumer-resource systems which is crucial to better understand the biogeography and the consequences of global warming on trophic dynamics.


Asunto(s)
Cadena Alimentaria , Calentamiento Global , Biomasa , Ecosistema , Herbivoria , Temperatura
8.
Ecography ; 43(5): 714-723, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-33304029

RESUMEN

Rapid changes in species composition, also known as ecotones, can result from various causes including rapid changes in environmental conditions, or physiological thresholds. The possibility that ecotones arise from ecological niche construction by ecosystem engineers has received little attention. In this study, we investigate how the diversity of ecosystem engineers, and their interactions, can give rise to ecotones. We build a spatially explicit dynamical model that couples a multispecies community and its abiotic environment. We use numerical simulations and analytical techniques to determine the biotic and abiotic conditions under which ecotone emergence is expected to occur, and the role of biodiversity therein. We show that the diversity of ecosystem engineers can lead to indirect interactions through the modification of their shared environment. These interactions, which can be either competitive or mutualistic, can lead to the emergence of discrete communities in space, separated by sharp ecotones where a high species turnover is observed. Considering biodiversity is thus critical when studying the influence of species-environment interactions on the emergence of ecotones. This is especially true for the wide range of species that have small to moderate effects on their environment. Our work highlights new mechanisms by which biodiversity loss could cause significant changes in spatial community patterns in changing environments.

9.
PLoS Comput Biol ; 16(5): e1007827, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32413026

RESUMEN

When can ecological interactions drive an entire ecosystem into a persistent non-equilibrium state, where many species populations fluctuate without going to extinction? We show that high-diversity spatially heterogeneous systems can exhibit chaotic dynamics which persist for extremely long times. We develop a theoretical framework, based on dynamical mean-field theory, to quantify the conditions under which these fluctuating states exist, and predict their properties. We uncover parallels with the persistence of externally-perturbed ecosystems, such as the role of perturbation strength, synchrony and correlation time. But uniquely to endogenous fluctuations, these properties arise from the species dynamics themselves, creating feedback loops between perturbation and response. A key result is that fluctuation amplitude and species diversity are tightly linked: in particular, fluctuations enable dramatically more species to coexist than at equilibrium in the very same system. Our findings highlight crucial differences between well-mixed and spatially-extended systems, with implications for experiments and their ability to reproduce natural dynamics. They shed light on the maintenance of biodiversity, and the strength and synchrony of fluctuations observed in natural systems.


Asunto(s)
Biodiversidad , Ecosistema , Animales , Modelos Biológicos , Dinámicas no Lineales
10.
Phys Rev E ; 100(5-1): 052309, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31870021

RESUMEN

We generalize an algorithm used widely in the configuration model such that power-law degree sequences with the degree exponent λ and the number of links per node K controllable independently may be generated. It yields the degree distribution in a different form from that of the static model or under random removal of links while sharing the same λ and K. With this generalized power-law degree distribution, the critical point K_{c} for the appearance of the giant component remains zero not only for λ≤3 but also for 3<λ<λ_{l}≃3.81. This is contrasted with K_{c}=0 only for λ≤3 in the static model and under random link removal. The critical exponents and the cluster-size distribution for λ<λ_{l} are also different from known results. By analyzing the moments and the generating function of the degree distribution and comparison with those of other models, we show that the asymptotic behavior and the degree exponent may not be the only properties of the degree distribution relevant to the critical phenomena but that its whole functional form can be relevant. These results can be useful in designing and assessing the structure and robustness of networked systems.

11.
Ecol Lett ; 22(8): 1243-1252, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31134748

RESUMEN

The question whether communities should be viewed as superorganisms or loose collections of individual species has been the subject of a long-standing debate in ecology. Each view implies different spatiotemporal community patterns. Along spatial environmental gradients, the organismic view predicts that species turnover is discontinuous, with sharp boundaries between communities, while the individualistic view predicts gradual changes in species composition. Using a spatially explicit multispecies competition model, we show that organismic and individualistic forms of community organisation are two limiting cases along a continuum of outcomes. A high variance of competition strength leads to the emergence of organism-like communities due to the presence of alternative stable states, while weak and uniform interactions induce gradual changes in species composition. Dispersal can play a confounding role in these patterns. Our work highlights the critical importance of considering species interactions to understand and predict the responses of species and communities to environmental changes.


Asunto(s)
Ecología , Ecosistema
12.
Ecol Lett ; 22(2): 405-419, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30560550

RESUMEN

Food chain theory is one of the cornerstones of ecology, providing many of its basic predictions, such as biomass pyramids, trophic cascades and predator-prey oscillations. Yet, ninety years into this theory, the conditions under which these patterns may occur and persist in nature remain subject to debate. Rather than address each pattern in isolation, we propose that they must be understood together, calling for synthesis in a fragmented landscape of theoretical and empirical results. As a first step, we propose a minimal theory that combines the long-standing energetic and dynamical approaches of food chains. We chart theoretical predictions on a concise map, where two main regimes emerge: across various functioning and stability metrics, one regime is characterised by pyramidal patterns and the other by cascade patterns. The axes of this map combine key physiological and ecological variables, such as metabolic rates and self-regulation. A quantitative comparison with data sheds light on conflicting theoretical predictions and empirical puzzles, from size spectra to causes of trophic cascade strength. We conclude that drawing systematic connections between various existing approaches to food chains, and between their predictions on functioning and stability, is a crucial step in confronting this theory to real ecosystems.


Asunto(s)
Ecología , Cadena Alimentaria , Animales , Biomasa , Ecosistema , Conducta Predatoria
13.
Ecol Lett ; 21(6): 779-793, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29611278

RESUMEN

Understanding how humans and other animals behave in response to changes in their environments is vital for predicting population dynamics and the trajectory of coupled social-ecological systems. Here, we present a novel framework for identifying emergent social behaviours in foragers (including humans engaged in fishing or hunting) in predator-prey contexts based on the exploration difficulty and exploitation potential of a renewable natural resource. A qualitative framework is introduced that predicts when foragers should behave territorially, search collectively, act independently or switch among these states. To validate it, we derived quantitative predictions from two models of different structure: a generic mathematical model, and a lattice-based evolutionary model emphasising exploitation and exclusion costs. These models independently identified that the exploration difficulty and exploitation potential of the natural resource controls the social behaviour of resource exploiters. Our theoretical predictions were finally compared to a diverse set of empirical cases focusing on fisheries and aquatic organisms across a range of taxa, substantiating the framework's predictions. Understanding social behaviour for given social-ecological characteristics has important implications, particularly for the design of governance structures and regulations to move exploited systems, such as fisheries, towards sustainability. Our framework provides concrete steps in this direction.


Asunto(s)
Ecología , Ecosistema , Animales , Conservación de los Recursos Naturales , Explotaciones Pesqueras , Humanos , Dinámica Poblacional
14.
Proc Natl Acad Sci U S A ; 115(9): 2156-2161, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29440487

RESUMEN

The study of ecological communities often involves detailed simulations of complex networks. However, our empirical knowledge of these networks is typically incomplete and the space of simulation models and parameters is vast, leaving room for uncertainty in theoretical predictions. Here we show that a large fraction of this space of possibilities exhibits generic behaviors that are robust to modeling choices. We consider a wide array of model features, including interaction types and community structures, known to generate different dynamics for a few species. We combine these features in large simulated communities, and show that equilibrium diversity, functioning, and stability can be predicted analytically using a random model parameterized by a few statistical properties of the community. We give an ecological interpretation of this "disordered" limit where structure fails to emerge from complexity. We also demonstrate that some well-studied interaction patterns remain relevant in large ecosystems, but their impact can be encapsulated in a minimal number of additional parameters. Our approach provides a powerful framework for predicting the outcomes of ecosystem assembly and quantifying the added value of more detailed models and measurements.


Asunto(s)
Biodiversidad , Variación Genética , Modelos Biológicos , Animales , Simulación por Computador
15.
PLoS Comput Biol ; 12(10): e1005147, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27764098

RESUMEN

Predators of all kinds, be they lions hunting in the Serengeti or fishermen searching for their catch, display various collective strategies. A common strategy is to share information about the location of prey. However, depending on the spatial characteristics and mobility of predators and prey, information sharing can either improve or hinder individual success. Here, our goal is to investigate the interacting effects of space and information sharing on predation efficiency, represented by the expected rate at which prey are found and consumed. We derive a feeding functional response that accounts for both spatio-temporal heterogeneity and communication, and validate this mathematical analysis with a computational agent-based model. This agent-based model has an explicit yet minimal representation of space, as well as information sharing about the location of prey. The analytical model simplifies predator behavior into a few discrete states and one essential trade-off, between the individual benefit of acquiring information and the cost of creating spatial and temporal correlation between predators. Despite the absence of an explicit spatial dimension in these equations, they quantitatively predict the predator consumption rates measured in the agent-based simulations across the explored parameter space. Together, the mathematical analysis and agent-based simulations identify the conditions for when there is a benefit to sharing information, and also when there is a cost.


Asunto(s)
Conducta Cooperativa , Cadena Alimentaria , Difusión de la Información/métodos , Modelos Biológicos , Dinámica Poblacional , Conducta Predatoria/fisiología , Animales , Simulación por Computador , Ecosistema , Teoría del Juego , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...