Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Braz J Med Biol Res ; 55: e12343, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36477953

RESUMEN

Adipose tissue-derived mesenchymal stromal/stem cells (ASCs) are considered important tools in regenerative medicine and are being tested in several clinical studies. Porcine models are frequently used to obtain adipose tissue, due to the abundance of material and because they have immunological and physiological similarities with humans. However, it is essential to understand the effects and safe application of ASCs from pigs (pASCs) as an alternative therapy for diseases. Although minipigs are easy-to-handle animals that require less food and space, acquiring and maintaining them in a bioterium can be costly. Thus, we present a protocol for the isolation and proliferation of ASCs isolated from adipose tissue of farm pigs. Adipose tissue samples were extracted from the abdominal region of the animals. Because the pigs were not raised in a controlled environment, such as a bioterium, it was necessary to carry out rigorous procedures for disinfection. After this procedure, cells were isolated by mechanical dissociation and enzymatic digestion. A proliferation curve was performed and used to calculate the doubling time of the population. The characterization of pASCs was performed by immunophenotyping and cell differentiation in osteogenic and adipogenic lineages. The described method was efficient for the isolation and cultivation of pASCs, maintaining cellular attributes, such as surface antigens and multipotential differentiation during in vitro proliferation. This protocol presents the isolation and cultivation of ASCs from farm pig as an alternative for the isolation and cultivation of ASCs from minipigs, which require strictly controlled maintenance conditions and a more expensive process.


Asunto(s)
Tejido Adiposo , Células Madre , Humanos , Porcinos , Animales , Porcinos Enanos
2.
Braz. j. med. biol. res ; 55: e12343, 2022. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1403900

RESUMEN

Adipose tissue-derived mesenchymal stromal/stem cells (ASCs) are considered important tools in regenerative medicine and are being tested in several clinical studies. Porcine models are frequently used to obtain adipose tissue, due to the abundance of material and because they have immunological and physiological similarities with humans. However, it is essential to understand the effects and safe application of ASCs from pigs (pASCs) as an alternative therapy for diseases. Although minipigs are easy-to-handle animals that require less food and space, acquiring and maintaining them in a bioterium can be costly. Thus, we present a protocol for the isolation and proliferation of ASCs isolated from adipose tissue of farm pigs. Adipose tissue samples were extracted from the abdominal region of the animals. Because the pigs were not raised in a controlled environment, such as a bioterium, it was necessary to carry out rigorous procedures for disinfection. After this procedure, cells were isolated by mechanical dissociation and enzymatic digestion. A proliferation curve was performed and used to calculate the doubling time of the population. The characterization of pASCs was performed by immunophenotyping and cell differentiation in osteogenic and adipogenic lineages. The described method was efficient for the isolation and cultivation of pASCs, maintaining cellular attributes, such as surface antigens and multipotential differentiation during in vitro proliferation. This protocol presents the isolation and cultivation of ASCs from farm pig as an alternative for the isolation and cultivation of ASCs from minipigs, which require strictly controlled maintenance conditions and a more expensive process.

3.
BMC Pregnancy Childbirth ; 20(1): 117, 2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-32075598

RESUMEN

BACKGROUND: Pelvic floor muscles (PFM) and rectus abdominis muscles (RAM) of pregnant diabetic rats exhibit atrophy, co-localization of fast and slow fibers and an increased collagen type I/III ratio. However, the role of similar PFM or RAM hyperglycemic-related myopathy in women with gestational diabetes mellitus (GDM) remains poorly investigated. This study aims to assess the frequency of pelvic floor muscle disorders and pregnancy-specific urinary incontinence (PS-UI) 12 months after the Cesarean (C) section in women with GDM. Specifically, differences in PFM/RAM hyperglycemic myopathy will be evaluated. METHODS: The Diamater is an ongoing cohort study of four groups of 59 pregnant women each from the Perinatal Diabetes Research Centre (PDRC), Botucatu Medical School (FMB)-UNESP (São Paulo State University), Brazil. Diagnosis of GDM and PS-UI will be made at 24-26 weeks, with a follow-up at 34-38 weeks of gestation. Inclusion in the study will occur at the time of C-section, and patients will be followed at 24-48 h, 6 weeks and 6 and 12 months postpartum. Study groups will be classified as (1) GDM plus PS-UI; (2) GDM without PS-UI; (3) Non-GDM plus PS-UI; and (4) Non-GDM without PS-UI. We will analyze relationships between GDM, PS-UI and hyperglycemic myopathy at 12 months after C-section. The mediator variables to be evaluated include digital palpation, vaginal squeeze pressure, 3D pelvic floor ultrasound, and 3D RAM ultrasound. RAM samples obtained during C-section will be analyzed for ex-vivo contractility, morphological, molecular and OMICS profiles to further characterize the hyperglycemic myopathy. Additional variables to be evaluated include maternal age, socioeconomic status, educational level, ethnicity, body mass index, weight gain during pregnancy, quality of glycemic control and insulin therapy. DISCUSSION: To our knowledge, this will be the first study to provide data on the prevalence of PS-UI and RAM and PFM physical and biomolecular muscle profiles after C-section in mothers with GDM. The longitudinal design allows for the assessment of cause-effect relationships between GDM, PS-UI, and PFMs and RAMs myopathy. The findings may reveal previously undetermined consequences of GDM.


Asunto(s)
Diabetes Gestacional/fisiopatología , Enfermedades Musculares/fisiopatología , Incontinencia Urinaria/fisiopatología , Adulto , Brasil , Cesárea , Estudios de Cohortes , Femenino , Edad Gestacional , Ganancia de Peso Gestacional , Humanos , Edad Materna , Contracción Muscular/fisiología , Fuerza Muscular/fisiología , Palpación , Diafragma Pélvico/fisiopatología , Periodo Posparto , Embarazo , Recto del Abdomen/fisiopatología , Vagina
4.
Braz J Med Biol Res ; 51(4): e7035, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29513796

RESUMEN

The urethral muscle of diabetic pregnant rats is affected by long-term mild diabetes and short-term severe diabetes, which plays a crucial role in the pathogenesis of pelvic floor disorders. We hypothesized that muscles outside the pelvis are subject to similar changes. The current study aimed at analyzing the effects of long-term mild and short-term severe diabetes on the structure and ultrastructure of fiber muscles and collagen in rats' rectus abdominis (RA) muscle. Therefore, the RA muscle of virgin, pregnant, long-term mild diabetic, short-term severe diabetic, long-term mild diabetic pregnant and short-term severe diabetic pregnant 3-month-old Wistar rats were collected. The structure was analyzed by picrosirius red staining, immunohistochemistry for fast and slow muscle fibers and transmission electron microscopy. We investigated two levels of STZ- induced diabetes: long-term mild diabetes (blood glucose level: 120-200 mg/dL) and short-term severe diabetes (blood glucose level >300 mg/dL). Long-term mild diabetic pregnant and short-term severe diabetic pregnant rats had decreased fast fibers and increased slow fibers, disrupted areas of sarcomere, intermyofibrillar mitochondria and myelin figures in the RA muscle. Both groups enabled us to analyze the specific influence of pregnancy, separately from diabetes. The current study demonstrated that diabetes and pregnancy induced intramuscular transformation and reorganization of RA muscle with a switch of fiber type adjusting their architecture according to intensity and duration of hyperglycemic insult within pregnancy.


Asunto(s)
Colágeno/ultraestructura , Diabetes Mellitus Experimental/patología , Fibras Musculares Esqueléticas/ultraestructura , Embarazo en Diabéticas/patología , Recto del Abdomen/ultraestructura , Animales , Femenino , Inmunohistoquímica , Embarazo , Ratas , Ratas Wistar , Índice de Severidad de la Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...