Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Cancer ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565920

RESUMEN

The YAP-TEAD protein-protein interaction mediates YAP oncogenic functions downstream of the Hippo pathway. To date, available YAP-TEAD pharmacologic agents bind into the lipid pocket of TEAD, targeting the interaction indirectly via allosteric changes. However, the consequences of a direct pharmacological disruption of the interface between YAP and TEADs remain largely unexplored. Here, we present IAG933 and its analogs as potent first-in-class and selective disruptors of the YAP-TEAD protein-protein interaction with suitable properties to enter clinical trials. Pharmacologic abrogation of the interaction with all four TEAD paralogs resulted in YAP eviction from chromatin and reduced Hippo-mediated transcription and induction of cell death. In vivo, deep tumor regression was observed in Hippo-driven mesothelioma xenografts at tolerated doses in animal models as well as in Hippo-altered cancer models outside mesothelioma. Importantly this also extended to larger tumor indications, such as lung, pancreatic and colorectal cancer, in combination with RTK, KRAS-mutant selective and MAPK inhibitors, leading to more efficacious and durable responses. Clinical evaluation of IAG933 is underway.

2.
Nat Commun ; 14(1): 3907, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37400441

RESUMEN

YAP is a key transcriptional co-activator of TEADs, it regulates cell growth and is frequently activated in cancer. In Malignant Pleural Mesothelioma (MPM), YAP is activated by loss-of-function mutations in upstream components of the Hippo pathway, while, in Uveal Melanoma (UM), YAP is activated in a Hippo-independent manner. To date, it is unclear if and how the different oncogenic lesions activating YAP impact its oncogenic program, which is particularly relevant for designing selective anti-cancer therapies. Here we show that, despite YAP being essential in both MPM and UM, its interaction with TEAD is unexpectedly dispensable in UM, limiting the applicability of TEAD inhibitors in this cancer type. Systematic functional interrogation of YAP regulatory elements in both cancer types reveals convergent regulation of broad oncogenic drivers in both MPM and UM, but also strikingly selective programs. Our work reveals unanticipated lineage-specific features of the YAP regulatory network that provide important insights to guide the design of tailored therapeutic strategies to inhibit YAP signaling across different cancer types.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Neoplasias , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Señalizadoras YAP , Epigenómica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transducción de Señal/genética
3.
Blood ; 141(5): 453-466, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36095844

RESUMEN

Chromosomal rearrangements involving the MDS1 and EVI1 complex locus (MECOM) on chromosome 3q26 define an aggressive subtype of acute myeloid leukemia (AML) that is associated with chemotherapy resistance and dismal prognosis. Established treatment regimens commonly fail in these patients, therefore, there is an urgent need for new therapeutic concepts that will require a better understanding of the molecular and cellular functions of the ecotropic viral integration site 1 (EVI1) oncogene. To characterize gene regulatory functions of EVI1 and associated dependencies in AML, we developed experimentally tractable human and murine disease models, investigated the transcriptional consequences of EVI1 withdrawal in vitro and in vivo, and performed the first genome-wide CRISPR screens in EVI1-dependent AML. By integrating conserved transcriptional targets with genetic dependency data, we identified and characterized the ETS transcription factor ERG as a direct transcriptional target of EVI1 that is aberrantly expressed and selectively required in both human and murine EVI1-driven AML. EVI1 controls the expression of ERG and occupies a conserved intragenic enhancer region in AML cell lines and samples from patients with primary AML. Suppression of ERG induces terminal differentiation of EVI1-driven AML cells, whereas ectopic expression of ERG abrogates their dependence on EVI1, indicating that the major oncogenic functions of EVI1 are mediated through aberrant transcriptional activation of ERG. Interfering with this regulatory axis may provide entry points for the development of rational targeted therapies.


Asunto(s)
Proteínas de Unión al ADN , Leucemia Mieloide Aguda , Humanos , Animales , Ratones , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteína del Locus del Complejo MDS1 y EV11/genética , Proto-Oncogenes/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Carcinogénesis/genética , Regulador Transcripcional ERG/genética
4.
Nature ; 514(7520): 98-101, 2014 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-25079320

RESUMEN

Haematopoiesis is a developmental cascade that generates all blood cell lineages in health and disease. This process relies on quiescent haematopoietic stem cells capable of differentiating, self renewing and expanding upon physiological demand. However, the mechanisms that regulate haematopoietic stem cell homeostasis and function remain largely unknown. Here we show that the neurotrophic factor receptor RET (rearranged during transfection) drives haematopoietic stem cell survival, expansion and function. We find that haematopoietic stem cells express RET and that its neurotrophic factor partners are produced in the haematopoietic stem cell environment. Ablation of Ret leads to impaired survival and reduced numbers of haematopoietic stem cells with normal differentiation potential, but loss of cell-autonomous stress response and reconstitution potential. Strikingly, RET signals provide haematopoietic stem cells with critical Bcl2 and Bcl2l1 surviving cues, downstream of p38 mitogen-activated protein (MAP) kinase and cyclic-AMP-response element binding protein (CREB) activation. Accordingly, enforced expression of RET downstream targets, Bcl2 or Bcl2l1, is sufficient to restore the activity of Ret null progenitors in vivo. Activation of RET results in improved haematopoietic stem cell survival, expansion and in vivo transplantation efficiency. Remarkably, human cord-blood progenitor expansion and transplantation is also improved by neurotrophic factors, opening the way for exploration of RET agonists in human haematopoietic stem cell transplantation. Our work shows that neurotrophic factors are novel components of the haematopoietic stem cell microenvironment, revealing that haematopoietic stem cells and neurons are regulated by similar signals.


Asunto(s)
Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Proteínas Proto-Oncogénicas c-ret/metabolismo , Animales , Supervivencia Celular , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Activación Enzimática , Femenino , Hematopoyesis , Trasplante de Células Madre Hematopoyéticas , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-ret/deficiencia , Proteínas Proto-Oncogénicas c-ret/genética , Transducción de Señal , Nicho de Células Madre , Proteína bcl-X/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
5.
Cell Rep ; 5(6): 1704-13, 2013 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-24332856

RESUMEN

Short hairpin RNA (shRNA) technology enables stable and regulated gene repression. For establishing experimentally versatile RNAi tools and minimizing toxicities, synthetic shRNAs can be embedded into endogenous microRNA contexts. However, due to our incomplete understanding of microRNA biogenesis, such "shRNAmirs" often fail to trigger potent knockdown, especially when expressed from a single genomic copy. Following recent advances in design of synthetic shRNAmir stems, here we take a systematic approach to optimize the experimental miR-30 backbone. Among several favorable features, we identify a conserved element 3' of the basal stem as critically required for optimal shRNAmir processing and implement it in an optimized backbone termed "miR-E", which strongly increases mature shRNA levels and knockdown efficacy. Existing miR-30 reagents can be easily converted to miR-E, and its combination with up-to-date design rules establishes a validated and accessible platform for generating effective single-copy shRNA libraries that will facilitate the functional annotation of the genome.


Asunto(s)
Técnicas de Silenciamiento del Gen/métodos , MicroARNs/química , Línea Celular Tumoral , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Motivos de Nucleótidos
6.
Rev Port Pneumol ; 13(1): 9-34, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17315088

RESUMEN

Lung cancer is the most frequent cause of cancer mortality worldwide, responsible for approximately 1.1 million deaths per year. Median survival is short, both as most tumours are diagnosed at an advanced stage and because of the limited efficacy of available treatments. The development of tumour molecular gene- tics carries the promise of altering this state of affairs, as it should lead to a more precise classification of tumours, identify specific molecular targets for therapy and, above all, allow the development of new methods for early diagnosis. Despite numerous studies demonstrating the usefulness of molecular genetic techniques in the study of lung cancer, its routine clinical use in Portugal has, however, been limited. In this study, we used a p53 mutation screen in multi- ple clinical samples from a series of lung cancer patients to attempt to identify the main practical limitations to the integration of molecular genetics in routine clinical practice. Our results suggest that the main limiting factor is the availability of samples with good quality DNA; a problem that could be overcome by alterations in common sample collection and storage procedures.


Asunto(s)
Adenocarcinoma/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Células Pequeñas/genética , Neoplasias Pulmonares/genética , Mutación , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...