Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Anim Biotechnol ; 34(7): 2400-2413, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35792778

RESUMEN

In industrial poultry, quail production has gained increasing prominence over the years. It is known that the intensification of genetic studies has contributed greatly to this growth, through techniques, such as analysis of gene expression by PCR, for example. This study aimed to evaluate stability and recommend reference genes for quantitative real-time PCR in different tissues from male and female broiler quails. The stability of 10 housekeeping genes (GAPDH, RPL5, MRPS27, MRPS30, TFRC, HMBS, EEF1, LDHA, B2M, and UBC) by means Bestkeeper, NormFinder, GeNorm softwares with ΔCq method. The tissues analyzed were: heart, thigh muscle, brain, and spleen, considering that they are tissues commonly used in nutrigenomic, immunological, and poultry performance research. As expected, the reference genes tested showed varying stability depending on the tissue evaluated. According to the present study, the most stable housekeeping genes were MRPS30, TFRC, and HMBS in heart; MRPS30, EEF1, and HMBS in thigh muscle; B2M, GAPDH, and UBC in brain; and EEF1, LDHA, and HMBS in spleen. Therefore, it is recommended to be used as reference genes for gene expression studies of male and female quails.


Asunto(s)
Pollos , Perfilación de la Expresión Génica , Masculino , Animales , Femenino , Perfilación de la Expresión Génica/métodos , Pollos/genética , Músculo Esquelético/metabolismo , Programas Informáticos , Reacción en Cadena en Tiempo Real de la Polimerasa , Expresión Génica/genética
2.
Animal ; 15(3): 100173, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33610520

RESUMEN

Our previous studies have shown that methionine supplementation could help to attenuate the effects of heat stress on the metabolism of broiler chickens. Here we investigated for the first time the effects of methionine supplementation in the form of DL-methionyl-DL-methionine on broilers subjected to heat stress during the growth phase. Broilers were divided into two groups; one group was reared under thermoneutral conditions and the other under continuous heat stress (30 ±â€¯1 °C, 60% relative humidity). Both groups were subdivided into three dietary treatments: a methionine-deficient (MD) diet, a diet supplemented with free methionine (DL-M), and a diet supplemented with methionine dipeptide (DL-MM). Broilers raised under chronic heat stress had lower feed intake and weight gain than broilers raised under thermoneutral conditions (P < 0.05). There were no differences in animal performance between methionine-supplemented diets (DL-M and DL-MM). Heat-stressed birds had significantly higher heterophil/lymphocyte (H/L) ratio than thermoneutral birds. Under heat stress, broilers fed DL-M and DL-MM diets had lower H/L ratio than birds fed the MD diet. Higher concentrations of carbonylated proteins and lower concentration of reduced glutathione were observed in broilers raised under heat stress. In comparing heat-stressed broilers, we found that birds fed the DL-M diet had lower concentrations of thiobarbituric acid-reactive substances and carbonylated proteins than those fed the MD diet (P < 0.05). Higher expression of glutathione peroxidase (GPX) and glutathione synthetase (GSS) genes was observed in heat-stressed broilers (P < 0.05). Under heat stress, the MD diet increased GPX expression compared with other diets. Under thermoneutral conditions, the DL-M diet resulted in the highest GSS expression. There was a negative correlation between DNA methylation and GPX and GSS expression. Our results showed that supplementation of broiler diets with free methionine or methionine dipeptide may help attenuate the effects of heat stress through enhanced activation of genes related to the glutathione antioxidant system. Methionine effects were found for gene regulation, gene expression, and post-translational processing.


Asunto(s)
Pollos , Metionina , Alimentación Animal/análisis , Animales , Pollos/metabolismo , Dieta/veterinaria , Suplementos Dietéticos/análisis , Dipéptidos , Calor , Metionina/metabolismo , Estrés Oxidativo , Temperatura
3.
Animal ; 11(5): 778-783, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27765079

RESUMEN

The aim of this study was to evaluate the effect of dietary lysine on performance, protein deposition and respiratory chain gene expression in male broilers. A total of 252 Cobb 500 broilers were distributed, in a completely randomized design, into four treatments with seven replicates of nine birds per experimental unit. Experimental treatments consisted of diets based on corn and soybean meal, with four levels of digestible lysine: 1.016%, 1.099%, 1.182% and 1.265%. The increase in the level of digestible lysine in the diet provided higher weight gains, feed efficiency and body protein deposition. Birds fed the lowest level of dietary lysine (1.016%) showed a lower expression of genes such as NADH dehydrogenase subunit I (ND1), cytochrome b (CYTB) and cytochrome c oxidase subunits I (COX I), II (COX II) and III (COX III), displaying the worst performance and body protein deposition. This demonstrates the relationship existing between the expression of the evaluated genes and the performance responses. In conclusion, results indicate that broilers fed diets with higher levels of digestible lysine have increased messenger RNA expression of some genes coded in the mitochondrial electron transport chain (ND1, CYTB, COX I, COX II and COX III). It may be stated that diets with proper levels of digestible lysine, within the 'ideal protein' concept, promote the expression of genes, which increases the mitochondrial energy, thereby fostering body protein deposition and the performance of broilers in the starter phase.


Asunto(s)
Proteínas Aviares/genética , Pollos/crecimiento & desarrollo , Lisina/metabolismo , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Proteínas Aviares/metabolismo , Pollos/metabolismo , Dieta/veterinaria , Digestión , Masculino , Músculos Pectorales/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Distribución Aleatoria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA