RESUMEN
PURPOSE: This study is to investigate the repercussions of hypothyroidism in the pathophysiological progression of pulmonary arterial hypertension (PAH). METHODS: While the control (CTL, n = 5) male Wistar rats received vehicle, PAH was induced with monocrotaline (MCT group, n = 15). Hypothyroidism was induced in a subset of rats by methimazole 3 weeks prior to the MCT injection (MMZ + MCT group, n = 15). Plasma thyroid hormones were measured by radioimmunoassay. Electrocardiographic, echocardiographic, and hemodynamic analyses were performed to evaluate the progression of PAH. Gene expression of antioxidant enzymes and cardiac hypertrophy markers were assessed by qPCR. Mitochondrial respiration, ATP levels, and ROS production were measured in right ventricular (RV) samples. RESULTS: Plasma T3 and T4 decreased in both MCT and MMZ + MCT groups (p < 0.05). Right ventricular systolic pressure (RVSP) increased, and RV - dP/dt, + dP/dt, and contractility index decreased in the MCT versus the CTL group and remained within control levels in the MMZ + MCT group (p < 0.05). Relative RV weight, RV wall thickness, RV diastolic area, and relative lung weight were augmented in the MCT versus the CTL group, whereas all parameters were improved to the CTL levels in the MMZ + MCT group (p < 0.05). Only the MCT group exhibited an increased duration of QTc interval compared to the baseline period (p < 0.05). ADP-induced mitochondrial respiration and ATP levels were decreased, and ROS production was increased in MCT versus the CTL group (p < 0.05), while the MMZ + MCT group exhibited increased mitochondrial respiration versus the MCT group (p < 0.05). CONCLUSION: Hypothyroidism attenuated the RV mitochondrial dysfunction and the pathophysiological progression of MCT-induced PAH.
RESUMEN
The antidiabetic agent class of sodium-glucose cotransporter 2 (SGLT2) inhibitors confer unprecedented cardiovascular benefits beyond glycemic control, including reducing the risk of fatal ventricular arrhythmias. However, the impact of SGLT2 inhibitors on the electrophysiological properties of cardiomyocytes exposed to stimuli other than hyperglycemia remains elusive. This investigation tested the hypothesis that the SGLT2 inhibitor empagliflozin (EMPA) affects cardiomyocyte electrical activity under hypoxic conditions. Rat neonatal and human induced pluripotent stem cell (iPSC)-derived cardiomyocytes incubated or not with the hypoxia-mimetic agent CoCl2 were treated with EMPA (1 µM) or vehicle for 24 h. Action potential records obtained using intracellular microelectrodes demonstrated that EMPA reduced the action potential duration at 30%, 50%, and 90% repolarization and arrhythmogenic events in rat and human cardiomyocytes under normoxia and hypoxia. Analysis of Ca2+ transients using Fura-2-AM and contractility kinetics showed that EMPA increased Ca2+ transient amplitude and decreased the half-time to recover Ca2+ transients and relaxation time in rat neonatal cardiomyocytes. We also observed that the combination of EMPA with the Na+/H+ exchanger isoform 1 (NHE1) inhibitor cariporide (10 µM) exerted a more pronounced effect on Ca2+ transients and contractility than either EMPA or cariporide alone. Besides, EMPA, but not cariporide, increased phospholamban phosphorylation at serine 16. Collectively, our data reveal that EMPA reduces arrhythmogenic events, decreases the action potential duration in rat neonatal and human cardiomyocytes under normoxic or hypoxic conditions, and improves cytosolic calcium handling at least partially independent of NHE1. Moreover, we provided further evidence that SGLT2 inhibitor-mediated cardioprotection may be partly attributed to its cardiomyocyte electrophysiological effects.
Asunto(s)
Compuestos de Bencidrilo , Calcio , Células Madre Pluripotentes Inducidas , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Animales , Humanos , Ratas , Arritmias Cardíacas , Compuestos de Bencidrilo/farmacología , Calcio/metabolismo , Miocitos Cardíacos , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacologíaRESUMEN
High caloric intake and physical inactivity are known precursors to the development of several chronic metabolic diseases. For obesity and sedentarism, High Intensity Intermittent Exercise (HIIE) and Intermittent Fasting (IF) have emerged as individual strategies to attenuate their negative effects by improving metabolism. To study their combined effects, Wistar male rats (n = 74, 60 days old) were divided into four groups: Sedentary Control (C), swimming-based HIIE only (HIIE), Intermittent Fasting only (IF), and swimming-based HIIE associated with Intermittent Fasting (HIIE/IF). Over an eight-week period swimming performance, body composition, weight and feeding behavior were analyzed. The final morphology of white adipose tissue showed a significant reduction in adipocyte size consistent with a higher number of cells per area in exercised animals (vs C and IF, p < 0.05), which also displayed characteristics of browning through UCP-1 levels and CD31 staining. These results suggest that the increased performance in the HIIE/IF group is, in part, by modifications of WAT metabolism through the browning process.
Asunto(s)
Entrenamiento de Intervalos de Alta Intensidad , Natación , Ratas , Animales , Masculino , Ratas Wistar , Ayuno Intermitente , Entrenamiento de Intervalos de Alta Intensidad/métodos , Obesidad , AyunoRESUMEN
Hutchinson-Gilford Progeria Syndrome (HGPS) is a rare genetic disorder that causes accelerated aging and a high risk of cardiovascular complications. However, the underlying mechanisms of cardiac complications of this syndrome are not fully understood. This study modeled HGPS using cardiomyocytes (CM) derived from induced pluripotent stem cells (iPSC) derived from a patient with HGPS and characterized the biophysical, morphological, and molecular changes found in these CM compared to CM derived from a healthy donor. Electrophysiological recordings suggest that the HGPS-CM was functional and had normal electrophysiological properties. Electron tomography showed nuclear morphology alteration, and the 3D reconstruction of electron tomography images suggests structural abnormalities in HGPS-CM mitochondria, however, there was no difference in mitochondrial content as measured by Mitotracker. Immunofluorescence indicates nuclear morphological alteration and confirms the presence of Troponin T. Telomere length was measured using qRT-PCR, and no difference was found in the CM from HGPS when compared to the control. Proteomic analysis was carried out in a high-resolution system using Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS). The proteomics data show distinct group separations and protein expression differences between HGPS and control-CM, highlighting changes in ribosomal, TCA cycle, and amino acid biosynthesis, among other modifications. Our findings show that iPSC-derived cardiomyocytes from a Progeria Syndrome patient have significant changes in mitochondrial morphology and protein expression, implying novel mechanisms underlying premature cardiac aging.
RESUMEN
Human pluripotent stem cells (PSC) have been used for disease modelling, after differentiation into the desired cell type. Electrophysiologic properties of cardiomyocytes derived from pluripotent stem cells are extensively used to model cardiac arrhythmias, in cardiomyopathies and channelopathies. This requires strict control of the multiple variables that can influence the electrical properties of these cells. In this article, we report the action potential variability of 780 cardiomyocytes derived from pluripotent stem cells obtained from six healthy donors. We analyze the overall distribution of action potential (AP) data, the distribution of action potential data per cell line, per differentiation protocol and batch. This analysis indicates that even using the same cell line and differentiation protocol, the differentiation batch still affects the results. This variability has important implications in modeling arrhythmias and imputing pathogenicity to variants encountered in patients with arrhythmic diseases. We conclude that even when using isogenic cell lines to ascertain pathogenicity to variants associated to arrythmias one should use cardiomyocytes derived from pluripotent stem cells using the same differentiation protocol and batch and pace the cells or use only cells that have very similar spontaneous beat rates. Otherwise, one may find phenotypic variability that is not attributable to pathogenic variants.
RESUMEN
BACKGROUND: Doxorubicin (Dox) is a chemotherapy drug with limited application due to cardiotoxicity that may progress to heart failure. This study aims to evaluate the role of cardiomyocytes derived from mouse embryonic stem cells (CM-mESCs) in the treatment of Dox-induced cardiomyopathy (DIC) in mice. METHODS: The mouse embryonic stem cell (mESC) line E14TG2A was characterized by karyotype analysis, gene expression using RT-PCR and immunofluorescence. Cells were transduced with luciferase 2 and submitted to cardiac differentiation. Total conditioned medium (TCM) from the CM-mESCs was collected for proteomic analysis. To establish DIC in CD1 mice, Dox (7.5 mg/kg) was administered once a week for 3 weeks, resulting in a cumulative Dox dose of 22.5 mg/kg. At the fourth week, a group of animals was injected intramyocardially with CM-mESCs (8 × 105 cells). Cells were tracked by a bioluminescence assay, and the body weight, echocardiogram, electrocardiogram and number of apoptotic cardiomyocytes were evaluated. RESULTS: mESCs exhibited a normal karyotype and expressed pluripotent markers. Proteomic analysis of TCM showed proteins related to the negative regulation of cell death. CM-mESCs presented ventricular action potential characteristics. Mice that received Dox developed heart failure and showed significant differences in body weight, ejection fraction (EF), end-systolic volume (ESV), stroke volume (SV), heart rate and QT and corrected QT (QTc) intervals when compared to the control group. After cell or placebo injection, the Dox + CM-mESC group showed significant increases in EF and SV when compared to the Dox + placebo group. Reduction in ESV and QT and QTc intervals in Dox + CM-mESC-treated mice was observed at 5 or 30 days after cell treatment. Cells were detected up to 11 days after injection. The Dox + CM-mESC group showed a significant reduction in the percentage of apoptotic cardiomyocytes in the hearts of mice when compared to the Dox + placebo group. CONCLUSIONS: CM-mESC transplantation improves cardiac function in mice with DIC.
Asunto(s)
Cardiomiopatías/terapia , Doxorrubicina/efectos adversos , Células Madre Embrionarias Humanas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/trasplante , Cardiomiopatías/inducido químicamente , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Línea Celular , Doxorrubicina/uso terapéutico , Células Madre Embrionarias Humanas/patología , Humanos , Células Madre Pluripotentes Inducidas/patología , Miocitos Cardíacos/patologíaRESUMEN
BACKGROUND: Heart failure represents an important public health issue due to its high costs and growing incidence worldwide. Evidence showing the regenerative potential of postmitotic heart tissue has suggested the existence of endogenous cardiac stem cells in adult hearts. Cardiosphere-derived cells (CDC) constitute a candidate pool of such cardiac stem cells. Previous studies using acute myocardial infarction (MI) models in rodents demonstrated an improvement in cardiac function after cell therapy with CDC. We evaluated the therapeutic potential of CDC 60 days after MI in a rat model. METHODS: CDC were obtained from human discarded myocardial tissue and rat hearts by enzymatic digestion with collagenase II. At 10-15 days after isolation, small, round, phase-bright cells (PBCs) appeared on top of the adherent fibroblast-like cells. The PBCs were collected and placed on a nonadherent plate for 2 days, where they formed cardiospheres which were then transferred to adherent plates, giving rise to CDC. These CDC were characterized by flow cytometry. Wistar rats were submitted to MI through permanent occlusion of the anterior descending coronary artery. After 60 days, they were immunosuppressed with cyclosporine A during 10 days. On the third day, infarcted animals were treated with 5 × 105 human CDC (hCDC) or placebo through intramyocardial injection guided by echocardiogram. Another group of animals was treated with rat CDC (rCDC) without immunosuppression. hCDC and rCDC were stably transduced with a viral construct expressing luciferase under control of a constitutive promoter. CDC were then used in a bioluminescence assay. Functional parameters were evaluated by echocardiogram 90 and 120 days after MI and by Langendorff at 120 days. RESULTS: CDC had a predominantly mesenchymal phenotype. Cell tracking by bioluminescence demonstrated over 85% decrease in signal at 5-7 days after cell therapy. Cardiac function evaluation by echocardiography showed no differences in ejection fraction, end-diastolic volume, or end-systolic volume between groups receiving human cells, rat cells, or placebo. Hemodynamic analyses and infarct area quantification confirmed that there was no improvement in cardiac remodeling after cell therapy with CDC. CONCLUSION: Our study challenges the effectiveness of CDC in post-ischemic heart failure.