Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Intervalo de año de publicación
1.
Neotrop. ichthyol ; 9(1): 183-190, Mar. 2011. ilus, tab
Artículo en Inglés | LILACS | ID: lil-583974

RESUMEN

O estuário do rio Goiana (7º30’S 34º47’W) é um típico estuário de região tropical semi-árida. Esse estuário abriga uma fauna rica de peixes, crustáceos e moluscos que tem um importante papel na vida da população tradicional. Ele também é o principal receptor de efluentes da agroindústria da cana-de-açúcar e esgoto das comunidades e vilas. Trichiurus lepturus (n = 104), do estuário do rio Goiana foram examinados para o conteúdo de mercúrio total durante dez meses (2005 a 2007) ao longo de duas estações secas e parte de uma estação chuvosa. Os indivíduos estudados apresentaram peso (P) (204,1±97,9 g) e comprimento total (CT) (63,1±10,1 cm, variação 29,5-89,0 cm) com uma correlação significativa (p<0,05). As correlações entre CT e Hg-T (r = 0,37286) e entre P e Hg-T (r = 0,38212) foram positivas e significativas. A ANOVA (2 fatores) (n = 81) mostrou que o CT e P apresentaram diferenças significativas (p<0,05) entre as estações. O Hg-T apresentou diferença em relação ao fator estação (p<0,05). A correlação entre Hg-T e a chuva apresentou uma relação negativa e significativa (r = -0,56; p<0,05). A precipitação pluviométrica influenciou fortemente a bioacumulação de mercúrio nessa espécie. Os meses secos apresentaram relativamente concentrações de mercúrio maiores do que o final da estação chuvosa. Isso sugere que a menor precipitação pluviométrica, e consequentemente a menor quantidade de material particulado e menor produtividade primária no estuário, torna o mercúrio mais biodisponível. Peixes desse estuário podem ser consumidos pela população humana ao longo de todo ano.


The Goiana River Estuary (7º30’S 34º47’W) is a typical estuary of the semi-arid tropical regions. This estuary shelters a rich fauna of fish, crustaceans and mollusks which play an important role in the life of traditional populations. It is also the main recipient of the effluents from the sugarcane agro-industry and sewage from settlements and villages. Trichiurus lepturus (n = 104), from the Goiana Estuary were examined for total mercury contents during ten months (2005 to 2007) spaning two dry seasons and part of a rainy season. The studied individuals showed weight (W) (204.1±97.9 g) and total length (TL) (63.1±10.1 cm, range 29.5-89.0 cm) with a significant (p<0.05) correlation. Correlation between TL and Hg-T (r = 0.37286) and between W and Hg-T (r = 0.38212) were positive and significant (p<0.05). Two-way ANOVA (n = 81) showed that TL and W had significant difference (p<0.05) among seasons. The Hg-T showed differences in relation to the factor season (p<0.05). The correlation between Hg-T and rainfall showed a negative and significant relation (r = -0.56; p<0.05). Rainfall strongly influenced the bioacumulation of mercury in this species. Dryer months showed relatively higher mercury concentrations than the end of the rainy season. Less rainfall, and consequently less particulate matter and less primary production in the estuary, make mercury more bioavailable. Fish from this estuary are fit for human consumption at all times of the year.


Asunto(s)
Animales , Estuarios/análisis , Mercurio , Fauna Acuática/estadística & datos numéricos , Estaciones del Año
2.
Environ Sci Pollut Res Int ; 16(4): 423-30, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19290559

RESUMEN

BACKGROUND, AIM, AND SCOPE: At tropical latitudes, and especially on the semi-arid coasts of the Brazilian Northeast, the rainfall regime governs the water quality of estuaries due to the pronounced difference between the rainy and dry seasons. These changes may be responsible for seasonal changes in bioavailability of mercury (Hg) and other pollutants to the estuarine and coastal biota. Mercury bioaccumulates along estuarine-marine food chains usually result in higher concentrations in tissues of top predators and posing a risk to both marine mammals and humans alike. The Goiana River Estuary (7.5 degrees S) is a typical estuary of the semi-arid tropical regions and supports traditional communities with fisheries (mollusks, fish, and crustacean). It is also responsible for an important part of the biological production of the adjacent coastal waters. MATERIALS AND METHODS: Trichiurus lepturus (Actinopterygii: Perciformes) is a pscivorous marine straggler. Fish from this species (n = 104) were captured in a trapping barrier used by the local traditional population and using an otter trawl net along the main channel of the low estuary during two dry seasons (D1 = November, December 2005, January 2006; D2 = November, December 2006, January 2007) and the end of a rainy season (R = August, September, October 2006). Fish muscle samples were preserved cold and then freeze-dried prior to analysis of its total mercury (Hg-T) contents. Total mercury was determined by cold vapor atomic absorption spectrometry (CV-AAS) with sodium borohydride as a reducing agent. RESULTS: The studied individuals (n = 104) were sub-adult (30-70 cm, 71 ind.) and adult fish (>70 cm, 33 ind.). Weight (W) (204.1 +/- 97.9 g, total biomass = 21,229.7 g) and total length (TL) (63.1 +/- 10.1 cm, range 29.5-89.0 cm) presented a significant (p < 0.05) correlation. Two-way ANOVA (n = 81) showed that TL and W had significant differences (p < 0.05) among seasons, being higher in D1 than in D2 and R, respectively. Moreover, season vs. month interaction were detected for the variables length and weight. For the variable weight was detected significant difference for the factor month (p < 0.05). It suggests that the fish enter the estuary at the end of the rainy season and increase in length and weight during the time they spend in the estuary. Fish from this estuary are shown to be fit for human consumption (125.3 +/- 61.9 microgHg-T kg(-1) w.wt.; n = 104). Fish mercury contents increased with size and weight. Correlations between TL and Hg-T (r = 0.37286) and between W and Hg-T (r = 0.38212) were significant (p < 0.05). Dryer months showed higher mercury concentrations in fish (D1 773.4 +/- 207.5 microgHg-T kg(-1) d.wt., n = 27; D2 370.1 +/- 78.8 microgHg-T kg(-1) d.wt., n = 27; R 331.2 +/- 138.5 microgHg-T kg(-1) d.wt., n = 27). The variable mercury concentration showed differences in relation to the factor season (p < 0.05), where fish captured during the first dry season showed the highest concentration of mercury. The correlation between Hg-T and rainfall (Rf) showed a negative correlation (r = -0.56; p < 0.05). DISCUSSION: The main likely source of mercury to this estuary is diffuse continental run off, including urban and industrial effluents. Since concentration of mercury in fish tissue is negatively correlated to rainfall, but positively correlated with fish length and weight, it suggests that fish growth in this estuary results in mercury uptake and concentration on the fish tissue. In the dry season of 2005-2006, when rainfall remained below the historic average, fish bioaccumulated significantly more mercury than in the dry season 2006-2007, when rainfall was within the predictable historic average. It is suggested that less rainfall, and consequently less particulate matter and less primary production in the estuary, make mercury more available to the higher levels of the estuarine food chain. In the case of higher rainfall, when river flow increases and water quality in the estuary is reduced, mercury probably is quickly exported associated to the particulate matter to the adjacent coastal waters where it then disperses. This species is a potential routine bioindicator for mercury contamination of the biota, but so far was used only with a limited number of individuals and contexts. CONCLUSIONS: Fish from the Goiana River estuary can still be safely consumed by the local population. However, any further contamination of this resource might lead to total mercury levels above the recommended limits for pregnant women and small children. The proposed heavy dependency of total mercury levels in fish on water quality indicates that land use and water quality standards must be more closely watched in order to guarantee that best possible practices are in place to prevent bioaccumulation of mercury and its transfer along the food chain. Human interventions and climatic events which affect river water flow are also playing a role in the mercury cycle at tropical semi-arid estuaries. RECOMMENDATIONS AND PERSPECTIVES: T. lepturus is largely consumed by coastal populations of tropical and sub-tropical countries all over the world. It is also consumed by a number of marine mammals over which we have a strong conservation interest. This species is also a link among different ecosystems along the estuarine ecocline. Therefore, knowledge of its degree of contamination might contribute to public health issues as well as marine conservation actions. Studies on mercury and other contaminants using this species as bioindicator (cosmopolitan, readily available) could help elucidating mechanisms through which pollutants are being transferred not only through the food chain, but also from estuarine-coastal-open waters. In addition, using the same species in marine pollution studies, especially as part of a mosaic of species, allows for wide range comparisons of marine food chain contamination.


Asunto(s)
Mercurio/metabolismo , Perciformes/metabolismo , Contaminantes Químicos del Agua/metabolismo , Animales , Tamaño Corporal , Brasil , Ecosistema , Mercurio/análisis , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Océanos y Mares , Lluvia , Ríos , Estaciones del Año , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA