Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 349: 140834, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38042421

RESUMEN

Beauty salons (BS) are places that deal with a wide range of cosmetics with potentially hazardous chemicals, and their effluent should be properly treated before going to the sewage system, once it represents characteristics of industrial wastewater. This work provides an extensive characterization of a BS effluent and its respective electrochemical treatment by comparing NaCl, Na2SO4, and Na2S2O8 as supporting electrolytes with a boron-doped diamond (BDD) as anode, applying 10 or 30 mA cm-2 of current density (j). The inclusion of UVC irradiation was also performed but the improvements achieved in removing the organic matter were null or lower. The analysis of chemical oxygen demand (COD) removal, energy consumption, and total current efficiency (TCE) was required to prove the efficacy of the processes and the comparative study of the performance of different technologies. Precipitate analysis was also done due to the high turbidity of the raw effluent and the appearance of a precipitate before and during the electrolysis, mainly with Na2S2O8. The precipitate confirmed the presence of silicates and small amounts of heavy metals. The results clearly showed that 6 h of treatment with Na2SO4 achieved 58% of COD removal with an energy consumption of about 0.52 kWh m-3, being the best electrolyte option for treating BS effluent by applying 10 mA cm-2. Under these experimental conditions, the final wastewater can be directly discharged into the sewage system with a lower amount of visible precipitate, and with 73% less turbidity. The treatment here proposed can be used as an alternative to decision-makers and governments once it can be a step further in the implementation of better and advanced politics of water sanitation.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Oxidación-Reducción , Aguas del Alcantarillado , Sulfatos/análisis , Contaminantes Químicos del Agua/análisis , Electrólitos , Diamante/química , Electrodos
2.
MethodsX ; 11: 102300, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37577171

RESUMEN

Aiming the decentralization of monitoring policies and to facilitate the work of researchers, mainly in developing countries, the present method deals with the explanation of a simple and rapid protocol for chemical oxygen demand (COD) analysis through the use of digital smartphone devices coupled with a camera and a free app available for Android operating system that recognizes HSV (hue, saturation, value). The calibration of the method is done based on the theoretical values of potassium hydrogen phthalate for a proper and reliable build of the calibration curve by using the smartphone-based technique and the digested samples of COD. The coefficient of determination (R2) attained a value upper than 0.99, providing a high confidence levels, and the method achieved 97% of average accuracy in samples with COD values ranging from 0 to 150 mg L-1. Finally, the procedure here presented can be a great support for scientific laboratories and monitoring policies, once it can efficiently substitute expensive spectrophotometers and can improve and ensure the sustainable management of water sanitation, which is one of the sustainable goals proposed by the United Nations.•COD measurements, based on the use of a simple smartphone with a camera, can be a promising way for environmental analysis when spectrophotometers are not available, such as decentralized approaches.•The use of smartphone protocol is a novel initiative to fulfill sustainable development goal 6 on clean water and sanitation.•The smartphone is capable to read the difference of HSV values efficiently and can substitute the use of expensive spectrophotometers.

3.
Sci Rep ; 13(1): 11082, 2023 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-37422460

RESUMEN

This study is focused on a proposal of a smartphone imaging-based quantification for providing a simple and rapid method for the analysis of chemical oxygen demand (COD) and color throughout the use of the HSV and/or RGB model in digital devices. For COD, calibration curves were done based on the theoretical values of potassium biphthalate for a proper comparison between the spectrophotometer and the smartphone techniques. The smartphone camera and application attain an average accuracy higher than the analysis in the spectrophotometer (98.3 and 96.2%, respectively). In the color analysis, it was demonstrated that only the UV-vis bands measurement is not feasible to perform the real abatement of the dye in the water because the limiting concentration that allows obtaining a linear relationship in this equipment related to the dye concentration is about 10 mg L-1. Above this value, the spectrophotometer can not reach the real difference of color in the solution. Meanwhile, the smartphone method by using the camera reaches linearity until 50 mg L-1. From an environmental point of view, smartphones have been used for monitoring several organic and inorganic pollutants, however, no attempts have been published related to their use to evaluate the color and COD during wastewater treatment. Therefore, this investigation also aims to assess the utilization of these methods, for the first time, when high-colored water polluted by methylene blue (MB) was electrochemically treated by using a boron-dopped diamond (BDD) as the anode, with different current densities (j = 30, 45, 60, and 90 mA cm-2). COD and color abatement results clearly showed that different organic matter/color removal efficiencies were achieved, depending on the j used. All the results are aligned with the studies already available in the literature, with the total removal of color in 120 min of electrolysis with 60 and 90 mA cm-2, and almost 80% of COD abatement with the higher j. Moreover, samples of real effluent from beauty salons were compared, with standard deviation varying from only 3 to 40 mg O2 L-1, which is acceptable for COD values close to 2000. Finally, the methods here presented can be a great benefit for public water monitoring policies, since it is cheap and has a decentralized characteristic, given that smartphones are very common and portable devices.


Asunto(s)
Teléfono Inteligente , Contaminantes Químicos del Agua , Análisis de la Demanda Biológica de Oxígeno , Electrólisis/métodos , Agua , Electrodos , Oxidación-Reducción
4.
Sci Total Environ ; 855: 158816, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36115407

RESUMEN

This study aims to develop a cheap method for the evaluation of quality of water or the assessment of the treatment of water by chemical oxygen demand (COD) measurements throughout the use of the HSV color model in digital devices. A free application installed on a smartphone was used for analyzing the images in which the colors were acquired before to be quantified. The proposed method was also validated by the standard and spectrophotometric methods, demonstrating that no significant statistical differences were attained (average accuracy of 97 %). With these results, the utilization of this smartphone-based method for COD analysis was used/evaluated, for first time, by treating electrochemically a real water matrix with substantial organic and salts content using BDD and Pt/Ti anodes. Aiming to understand the performance of both anodes, bulk experiments were performed under real pH by applying current densities (j) of 15, 30, and 60 mA cm-2. COD abatement results (which were achieved with this novel smart water security solution) clearly showed that different organic matter removal efficiencies were achieved, depending on the electrocatalytic material used as well as the applied current density (42 %, 45 %, and 85 % for Ti/Pt while 93 %, 97 % and total degradation for BDD by applying 15, 30, and 60 mA cm-2, respectively). However, when the persulfate-mediated oxidation approach was used, with the addition of 2 or 4 g Na2SO4 L-1, COD removal efficiencies were enhanced, obtaining total degradation with 4 g Na2SO4 L-1 and by applying 15 mA cm-2. Finally, this smartphone imaging-based method provides a simple and rapid method for the evaluation of COD during the use of electrochemical remediation technology, developing and decentralizing analytics technologies for smart water solutions which play a key role in achieving the Sustainable Development Goal 6 (SDG6).


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Aguas Residuales/química , Análisis de la Demanda Biológica de Oxígeno , Teléfono Inteligente , Análisis Costo-Beneficio , Electrodos , Contaminantes Químicos del Agua/química , Oxidación-Reducción , Agua
5.
Sci Total Environ ; 741: 140165, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32574920

RESUMEN

This study focuses on the development of a treatment train for a leachate from a hazardous industrial waste landfill (HIWL) previously treated by: (i) catalytic oxidation with hydrogen peroxide (H2O2) for sulphide and sulphite conversion into oxidized sulphur species, including sulphate, and (ii) chemical precipitation of sulphate as barite. The complete treatment line counted on four more stages: (iii) 1st biological oxidation for removal of biodegradable organic compounds and nitrogen species, (iv) coagulation with ferric chloride (coagulant dose of 100 mg Fe L-1, pH 2.8) for removal of a fraction of recalcitrant organics and suspended solids, (v) photo-Fenton oxidation using ultraviolet A (UVA) radiation (PF-UVA) (pH 2.8, initial total dissolved iron content of 140 mg L-1, treatment time of ~4 h) for recalcitrant organics degradation and biodegradability improvement, and (vi) 2nd biological oxidation for removal of the biodegradable organic matter resulting from the PF-UVA process. The use of anodic oxidation or photoelectro-Fenton processes in stage (v) demonstrated to be unfeasible. A chemical oxygen demand (COD) below 1000 mg O2 L-1, a common limit imposed by municipal wastewater treatment plants (MWWTPs) to effluents discharged into the municipal sewer, was achieved after a feasible treatment time (~4 h) using the multistep approach. The remediation of the HIWL leachate proved to be a big challenge.


Asunto(s)
Contaminantes Químicos del Agua/análisis , Análisis de la Demanda Biológica de Oxígeno , Residuos Peligrosos , Peróxido de Hidrógeno , Residuos Industriales , Oxidación-Reducción , Eliminación de Residuos Líquidos , Aguas Residuales
6.
Sci Total Environ ; 655: 1249-1260, 2019 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-30577117

RESUMEN

This study focused on the removal of sulphur compounds from a high-strength leachate of a hazardous industrial waste landfill. Firstly, sulphides (0.5 g L-1) and sulphites (2.5 g L-1) were catalytic oxidised at natural pH (8.7). Air or H2O2 were applied as oxidants and metals present in the leachate were used as catalysts. Distinct air flow rates and H2O2:sulphur molar ratios were tested. Concentrations of sulphide and sulphite lower than 1.0 mg L-1 (emission limit value - ELV) were obtained after 5-h oxygenation or 1-min peroxidation under the best conditions, i.e. air flow rate of 1 Lair Lleachate-1 min-1 and H2O2:sulphur stoichiometric ratio. Aeration was considered unsafe since >33 volatile organic compounds (VOCs) and hydrogen sulphide (H2S) were released to the atmosphere. Thus, only the H2O2-oxidised leachate pursued treatment. Sulphates (13 g L-1) were removed by chemical precipitation as ettringite or barite applying different reactants contents and pH values. Without pH correction, sulphate contents below 2.0 g L-1 (ELV) were achieved using a [Ca2+]:[Al3+]:[SO42-] molar ratio of 12:4:3 (2-fold stoichiometry) and a [Ba2+]:[SO42-] molar ratio of 1.0:1.0 (1-fold stoichiometry). The analysis of precipitates by X-ray diffraction (XRD) showed a three-phase ettringite (only 67% corresponding to ettringite itself) and single-phase barite. Barite precipitation proved to be more appealing since a value-added product was obtained and, furthermore, less reactants were required. After sulphur compounds removal using H2O2-driven catalytic oxidation and chemical precipitation through barite, the leachate was suitable for biological treatment, despite the high salinity, and a high fraction of the organic load (46%) could be biologically oxidised.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA