Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chem Biodivers ; 20(1): e202200777, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36541751

RESUMEN

In this study, the chemical composition of the essential oil (EO) extracted from Croton blanchetianus Baill leaves was identified, and antimicrobial and antibiofilm activities against Staphylococcus aureus, Staphylococcus epidermidis, and Escherichia coli strains were determined. Moreover, the effects of EO in combination with ampicillin and tetracycline were investigated. Thirty-four components, mainly mono-and sesquiterpenes that represented 94.05 % of the chemical composition, were identified in the EO. The EO showed bacteriostatic and bactericidal activities against all strains tested. Furthermore, the EO showed a synergistic effect with ampicillin and tetracycline. EO significantly inhibited biofilm formation and reduced the number of viable cells in biofilms. The EO may be a promising natural product for preventing bacterial biofilm infections.


Asunto(s)
Antiinfecciosos , Croton , Euphorbiaceae , Aceites Volátiles , Aceites Volátiles/farmacología , Aceites Volátiles/química , Antiinfecciosos/farmacología , Antiinfecciosos/química , Antibacterianos/farmacología , Antibacterianos/química , Ampicilina/farmacología , Staphylococcus aureus , Tetraciclinas/farmacología , Biopelículas , Pruebas de Sensibilidad Microbiana
2.
J Med Microbiol ; 71(5)2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35575783

RESUMEN

Introduction. Candida spp. are commensal fungal pathogens of humans, but when there is an imbalance in the microbiota, or weak host immunity, these yeasts can become pathogenic, generating high medical costs.Gap Statement. With the increase in resistance to conventional antifungals, the development of new therapeutic strategies is necessary. This study evaluated the in vitro antifungal activity of chlorogenic acid against fluconazole-resistant strains of Candida spp. Mechanism of action through flow cytometry and in silico analyses, as well as molecular docking assays with ALS3 and SAP5, important proteins in the pathogenesis of Candida albicans associated with the adhesion process and biofilm formation.Results. The chlorogenic acid showed in vitro antifungal activity against the strains tested, causing reduced cell viability, increased potential for mitochondrial depolarization and production of reactive oxygen species, DNA fragmentation and phosphatidylserine externalization, indicating an apoptotic process. Concerning the analysis through docking, the complexes formed between chlorogenic acid and the targets Thymidylate Kinase, CYP51, 1Yeast Cytochrome BC1 Complex e Exo-B-(1,3)-glucanase demonstrated more favourable binding energy. In addition, chlorogenic acid presented significant interactions with the ALS3 active site residues of C. albicans, important in the adhesion process and resistance to fluconazole. Regarding molecular docking with SAP5, no significant interactions were found between chlorogenic acid and the active site of the enzyme.Conclusion. We concluded that chlorogenic acid has potential use as an adjuvant in antifungal therapies, due to its anti-Candida activity and ability to interact with important drug targets.


Asunto(s)
Antifúngicos , Fluconazol , Antifúngicos/farmacología , Apoptosis , Biopelículas , Candida , Candida albicans , Ácido Clorogénico/farmacología , Farmacorresistencia Fúngica , Fluconazol/farmacología , Humanos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular
3.
Microb Pathog ; 155: 104892, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33894289

RESUMEN

Staphylococcus aureus is a commensal bacterium and opportunistic human pathogen that can cause a wide variety of clinical infections. It is recognized for its ability to acquire antimicrobial resistance, so methicillin-resistant Staphylococcus aureus (MRSA) infections are a global healthcare challenge. Therefore, the development of new therapeutic options and alternative therapies for treatment is necessary. Curcumin, a polyphenolic substance found in the rhizome of turmeric longa L, has been shown to have several therapeutic properties, including antimicrobial activity. The objective of the study was to evaluate the in vitro antibacterial activity of curcumin alone and associated with oxacillin against MRSA strains, to analyze the mechanism of cell death involved in the isolated action of curcumin by means of flow cytometry and molecular docking, and to verify its superbiofilm action. Curcumin showed antibacterial activity in the range of 125-500 µg/mL against the tested strains, since it caused an increase in membrane permeability and DNA fragmentation, as revealed by flow cytometry analysis. Moreover, it was possible to observe interactions of curcumin with wild-type S. aureus DHFR, S. aureus gyrase and S. aureus gyrase complex with DNA, DNA (5'-D(*CP*GP*AP*TP*GP*CP*G)-3') and Acyl-PBP2a from MRSA by molecular docking. Curcumin also had a synergistic and additive effect when associated with oxacillin, and significantly reduced the cell viability of the analyzed biofilms. Thus, curcumin is a possible candidate for pharmaceutical formulation development for the treatment of MRSA infections.


Asunto(s)
Curcumina , Staphylococcus aureus Resistente a Meticilina , Antibacterianos/farmacología , Biopelículas , Curcumina/farmacología , Humanos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Plancton , Staphylococcus aureus
4.
J Med Microbiol ; 70(3)2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33560202

RESUMEN

The genus Candida spp. has been highlighted as one of the main etiological agents causing fungal infections, with Candida albicans being the most prominent, responsible for most cases of candidemia. Due to its capacity for invasion and tissue adhesion, it is associated with the formation of biofilms, mainly in the environment and hospital devices, decreasing the effectiveness of available treatments. The repositioning of drugs, which is characterized by the use of drugs already on the market for other purposes, together with molecular-docking methods can be used aiming at the faster development of new antifungals to combat micro-organisms. This study aimed to evaluate the antifungal effect of diazepam on mature C. albicans biofilms in vitro and its action on biofilm in formation, as well as its mechanism of action and interaction with structures related to the adhesion of C. albicans, ALS3 and SAP5. To determine the MIC, the broth microdilution test was used according to protocol M27-A3 (CLSI, 2008). In vitro biofilm formation tests were performed using 96-well plates, followed by molecular-docking protocols to analyse the binding agent interaction with ALS3 and SAP5 targets. The results indicate that diazepam has antimicrobial activity against planktonic cells of Candida spp. and C. albicans biofilms, interacting with important virulence factors related to biofilm formation (ALS3 and SAP5). In addition, treatment with diazepam triggered a series of events in C. albicans cells, such as loss of membrane integrity, mitochondrial depolarization and increased production of EROs, causing DNA damage and consequent cell apoptosis.


Asunto(s)
Antifúngicos/farmacología , Biopelículas/efectos de los fármacos , Candida/efectos de los fármacos , Diazepam/farmacología , Farmacorresistencia Fúngica/efectos de los fármacos , Ácido Aspártico Endopeptidasas/metabolismo , Candida/patogenicidad , Fluconazol/farmacología , Proteínas Fúngicas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...