Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 2806, 2024 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-38307878

RESUMEN

Despite progress towards malaria reduction in Peru, measuring exposure in low transmission areas is crucial for achieving elimination. This study focuses on two very low transmission areas in Loreto (Peruvian Amazon) and aims to determine the relationship between malaria exposure and proximity to health facilities. Individual data was collected from 38 villages in Indiana and Belen, including geo-referenced households and blood samples for microscopy, PCR and serological analysis. A segmented linear regression model identified significant changes in seropositivity trends among different age groups. Local Getis-Ord Gi* statistic revealed clusters of households with high (hotspots) or low (coldspots) seropositivity rates. Findings from 4000 individuals showed a seropositivity level of 2.5% (95%CI: 2.0%-3.0%) for P. falciparum and 7.8% (95%CI: 7.0%-8.7%) for P. vivax, indicating recent or historical exposure. The segmented regression showed exposure reductions in the 40-50 age group (ß1 = 0.043, p = 0.003) for P. vivax and the 50-60 age group (ß1 = 0.005, p = 0.010) for P. falciparum. Long and extreme distance villages from Regional Hospital of Loreto exhibited higher malaria exposure compared to proximate and medium distance villages (p < 0.001). This study showed the seropositivity of malaria in two very low transmission areas and confirmed the spatial pattern of hotspots as villages become more distant.


Asunto(s)
Malaria Falciparum , Malaria Vivax , Malaria , Humanos , Perú/epidemiología , Plasmodium falciparum , Plasmodium vivax , Estudios Seroepidemiológicos , Malaria Falciparum/epidemiología , Malaria Vivax/epidemiología
2.
R Soc Open Sci ; 9(7): 211611, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35875474

RESUMEN

The impact of human population movement (HPM) on the epidemiology of vector-borne diseases, such as malaria, has been described. However, there are limited data on the use of new technologies for the study of HPM in endemic areas with difficult access such as the Amazon. In this study conducted in rural Peruvian Amazon, we used self-reported travel surveys and GPS trackers coupled with a Bayesian spatial model to quantify the role of HPM on malaria risk. By using a densely sampled population cohort, this study highlighted the elevated malaria transmission in a riverine community of the Peruvian Amazon. We also found that the high connectivity between Amazon communities for reasons such as work, trading or family plausibly sustains such transmission levels. Finally, by using multiple human mobility metrics including GPS trackers, and adapted causal inference methods we identified for the first time the effect of human mobility patterns on malaria risk in rural Peruvian Amazon. This study provides evidence of the causal effect of HPM on malaria that may help to adapt current malaria control programmes in the Amazon.

3.
Front Public Health ; 8: 526468, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33072692

RESUMEN

Human movement affects malaria epidemiology at multiple geographical levels; however, few studies measure the role of human movement in the Amazon Region due to the challenging conditions and cost of movement tracking technologies. We developed an open-source low-cost 3D printable GPS-tracker and used this technology in a cohort study to characterize the role of human population movement in malaria epidemiology in a rural riverine village in the Peruvian Amazon. In this pilot study of 20 participants (mean age = 40 years old), 45,980 GPS coordinates were recorded over 1 month. Characteristic movement patterns were observed relative to the infection status and occupation of the participants. Applying two analytical animal movement ecology methods, utilization distributions (UDs) and integrated step selection functions (iSSF), we showed contrasting environmental selection and space use patterns according to infection status. These data suggested an important role of human movement in the epidemiology of malaria in the Peruvian Amazon due to high connectivity between villages of the same riverine network, suggesting limitations of current community-based control strategies. We additionally demonstrate the utility of this low-cost technology with movement ecology analysis to characterize human movement in resource-poor environments.


Asunto(s)
Malaria , Ríos , Adulto , Animales , Estudios de Cohortes , Humanos , Malaria/epidemiología , Perú/epidemiología , Proyectos Piloto
4.
Malar J ; 19(1): 161, 2020 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-32316981

RESUMEN

BACKGROUND: Case management is one of the principal strategies for malaria control. This study aimed to estimate the economic costs of uncomplicated malaria case management and explore the influence of health-seeking behaviours on those costs. METHODS: A knowledge, attitudes and practices (KAP) survey was applied to 680 households of fifteen communities in Mazan-Loreto in March 2017, then a socio-economic survey was conducted in September 2017 among 161 individuals with confirmed uncomplicated malaria in the past 3 months. Total costs per episode were estimated from both provider (Ministry of Health, MoH) and patient perspectives. Direct costs were estimated using a standard costing estimation procedure, while the indirect costs considered the loss of incomes among patients, substitute labourers and companions due to illness in terms of the monthly minimum wage. Sensitivity analysis evaluated the uncertainty of the average cost per episode. RESULTS: The KAP survey showed that most individuals (79.3%) that had malaria went to a health facility for a diagnosis and treatment, 2.7% received those services from community health workers, and 8% went to a drugstore or were self-treated at home. The average total cost per episode in the Mazan district was US$ 161. The cost from the provider's perspective was US$ 30.85 per episode while from the patient's perspective the estimated cost was US$ 131 per episode. The average costs per Plasmodium falciparum episode (US$ 180) were higher than those per Plasmodium vivax episode (US$ 156) due to longer time lost from work by patients with P. falciparum infections (22.2 days) than by patients with P. vivax infections (17.0 days). The delayed malaria diagnosis (after 48 h of the onset of symptoms) was associated with the time lost from work due to illness (adjusted mean ratio 1.8; 95% CI 1.3, 2.6). The average cost per malaria episode was most sensitive to the uncertainty around the lost productivity cost due to malaria. CONCLUSIONS: Despite the provision of free malaria case management by MoH, there is delay in seeking care and the costs of uncomplicated malaria are mainly borne by the families. These costs are not well perceived by the society and the substantial financial impact of the disease can be frequently undervalued in public policy planning.


Asunto(s)
Manejo de Caso/economía , Conocimientos, Actitudes y Práctica en Salud , Malaria Falciparum/prevención & control , Malaria Vivax/prevención & control , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Perú , Adulto Joven
5.
PeerJ ; 7: e6298, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30697487

RESUMEN

Infectious disease dynamics are affected by human mobility more powerfully than previously thought, and thus reliable traceability data are essential. In rural riverine settings, lack of infrastructure and dense tree coverage deter the implementation of cutting-edge technology to collect human mobility data. To overcome this challenge, this study proposed the use of a novel open mobile mapping tool, GeoODK. This study consists of a purposive sampling of 33 participants in six villages with contrasting patterns of malaria transmission that demonstrates a feasible approach to map human mobility. The self-reported traceability data allowed the construction of the first human mobility framework in rural riverine villages in the Peruvian Amazon. The mobility spectrum in these areas resulted in travel profiles ranging from 2 hours to 19 days; and distances between 10 to 167 km. Most Importantly, occupational-related mobility profiles with the highest displacements (in terms of time and distance) were observed in commercial, logging, and hunting activities. These data are consistent with malaria transmission studies in the area that show villages in watersheds with higher human movement are concurrently those with greater malaria risk. The approach we describe represents a potential tool to gather critical information that can facilitate malaria control activities.

6.
PLoS Negl Trop Dis ; 9(4): e0003648, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25860352

RESUMEN

BACKGROUND AND OBJECTIVES: The dramatic range expansion of the dengue vector Aedes aegypti is associated with various anthropogenic transport activities, but little is known about the underlying mechanisms driving this geographic expansion. We longitudinally characterized infestation of different vehicle types (cars, boats, etc.) to estimate the frequency and intensity of mosquito introductions into novel locations (propagule pressure). METHODS: Exhaustive adult and immature Ae. aegypti collections were performed on six different vehicle types at five ports and two bus/ taxi departure points in the Amazonian city of Iquitos, Peru during 2013. Aquatic vehicles included 32 large and 33 medium-sized barges, 53 water taxis, and 41 speed boats. Terrestrial vehicles sampled included 40 buses and 30 taxis traveling on the only highway in the region. Ae. aegypti adult infestation rates and immature indices were analyzed by vehicle type, location within vehicles, and sampling date. RESULTS: Large barges (71.9% infested) and medium barges (39.4% infested) accounted for most of the infestations. Notably, buses had an overall infestation rate of 12.5%. On large barges, the greatest number of Ae. aegypti adults were found in October, whereas most immatures were found in February followed by October. The vast majority of larvae (85.9%) and pupae (76.7%) collected in large barges were produced in puddles formed in cargo holds. CONCLUSIONS: Because larges barges provide suitable mosquito habitats (due to dark, damp cargo storage spaces and ample oviposition sites), we conclude that they likely serve as significant contributors to mosquitoes' propagule pressure across long distances throughout the Peruvian Amazon. This information can help anticipate vector population mixing and future range expansions of dengue and other viruses transmitted by Ae. aegypti.


Asunto(s)
Aedes/fisiología , Distribución Animal , Ciudades , Dengue/epidemiología , Insectos Vectores/fisiología , Vehículos a Motor , Navíos , Aedes/virología , Animales , Dengue/transmisión , Femenino , Insectos Vectores/virología , Larva/fisiología , Larva/virología , Estudios Longitudinales , Perú/epidemiología , Pupa/fisiología , Pupa/virología , Ríos , Estaciones del Año
7.
PLoS Negl Trop Dis ; 8(8): e3033, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25101786

RESUMEN

BACKGROUND AND OBJECTIVES: In the Peruvian Amazon, the dengue vector Aedes aegypti is abundant in large urban centers such as Iquitos. In recent years, it has also been found in a number of neighboring rural communities with similar climatic and socioeconomic conditions. To better understand Ae. aegypti spread, we compared characteristics of communities, houses, and containers in infested and uninfested communities. METHODS: We conducted pupal-demographic surveys and deployed ovitraps in 34 communities surrounding the city of Iquitos. Communities surveyed were located along two transects: the Amazon River and a 95 km highway. We calculated entomological indices, mapped Ae. aegypti presence, and developed univariable and multivariable logistic regression models to predict Ae. aegypti presence at the community, household, or container level. RESULTS: Large communities closer to Iquitos were more likely to be infested with Ae. aegypti. Within infested communities, houses with Ae. aegypti had more passively-filled containers and were more often infested with other mosquito genera than houses without Ae. aegypti. For containers, large water tanks/drums and containers with solar exposure were more likely to be infested with Ae. aegypti. Maps of Ae. aegypti presence revealed a linear pattern of infestation along the highway, and a scattered pattern along the Amazon River. We also identified the geographical limit of Ae. aegypti expansion along the highway at 19.3 km south of Iquitos. CONCLUSION: In the Peruvian Amazon, Ae. aegypti geographic spread is driven by human transportation networks along rivers and highways. Our results suggest that urban development and oviposition site availability drive Ae. aegypti colonization along roads. Along rivers, boat traffic is likely to drive long-distance dispersal via unintentional transport of mosquitoes on boats.


Asunto(s)
Aedes/crecimiento & desarrollo , Animales , Dengue/transmisión , Humanos , Modelos Logísticos , Perú , Crecimiento Demográfico , Ríos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...